Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitationa Wave Signals

Search Techniques

Search Optimization

Low-Latency

Coherent Searches

Summary

Confronting computational challenges in gravitational-wave searches Balancing computational costs and sensitivity optimizations when searching for inspiral signals

Drew Keppel

Max Planck Institute for Gravitational Physics

3 May 2013

イロト イポト イヨト イヨト

Overview

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitational Wave Signals

Search Technique

Search Optimization

Low-Latency

Coherent Searches

Summary

- So What are inspiral gravitational-wave (GW) signals?
- What techniques are used to perform searches for these signals?
- How are these searches optimized?
- Can low-latency searches be achieved?
- Solution How are coherent searches performed?
- Are coherent searches more sensitive than coincident ones?

Signal Classes and Astrophysical Sources

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitational-Wave Signals

Search Technique

Search Optimization

Low-Latency

Coherent Searches

Summary

Stochastic Signals

- * Primordial background
- * Phase Transitions
- * Interfering Signals (e.g., Cosmic strings, Galactic White Dwarf Binaries)
- Continuous Waves
 - * Mountains on rotating neutron stars
 - * Quadrupole-producing oscillation modes of neutron stars
- Modeled Transients
 - * Binary combinations of neutron stars and/or black holes
 - * Travelling cusps on cosmic strings
 - * Ringdowns of neutron stars or black holes
- Unmodeled Transients
 - * Supernovae
 - * ???

Inspiral Signals

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitational-Wave Signals

Search Techniques

Search Optimizatior

Low-Latency

Coherent Searches

Summary

17 parameters determine generic inspiral waveforms:

 $\overbrace{\{D, \iota, \psi, \phi_0, \alpha, \delta, t_c\}}^{\text{extrinsic}}, \overbrace{\{m_1, m_2, \mathbf{s}_1, \mathbf{s}_2, e, \omega\}}^{\text{intrinsic}}$

- extrinsic parameters only affect amplitude and phase of waveform
- \star e and ω from elliptical orbits
- * \mathbf{s}_1 and \mathbf{s}_2 from spinning objects
- m_1 and m_2 (M_c and η) are the only remaining parameters that determine the waveform for BNS signals

Inspiral Signals

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitational-Wave Signals

Search Techniques

Search Optimizatior

Low-Latency

Coherent Searches

Summary

S Waveforms have "chirp" morphology

- * Objects orbit faster and emit stronger GW radiation as separation decreases
- * Post-Newtonian theory describe the waveform as a power series expansion in the orbital frequency

≡ ∽へ (~ 5 / 23

Search Techniques

Confronting computational challenges in gravitationalwave searches

Drew Keppe

Overview

Gravitationa Wave Signals

Search Techniques

Search Optimizatior

Low-Latency

Coherent Searches

Summary

When the signal's waveform is known, matched filtering provides the maximum likelihood estimate of the signal parameters

$$P(t) = (h|s)(t) := \frac{4}{\sigma} \int_0^\infty \frac{\tilde{h}^*(f)\tilde{s}(f)}{S_n(f)} e^{2\pi i f t} df, \quad P(\rho^2) = \frac{1}{2} e^{-\rho^2/2}$$

Template Bank Construction

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitational Wave Signals

Search Techniques

Search Optimization

Low-Latency

Coherent Searches

Summary

Q: How do we search for a signal with unknown parameters? **A:** Search for many different combinations of parameters.

Q: How do we choose which parameters?

A: Use the matched filter definition to define a metric on the parameter space.

$$egin{aligned} g_{\mu
u} &:= rac{(\partial_\mu h | \partial_
u h)}{(h | h)} \ m &= rac{1}{2} g_{\mu
u} \Delta \lambda^\mu \Delta \lambda^
u \end{aligned}$$

Metric currently computed to 3.5PN for non-spinning inspiral signals.¹

Template Bank Construction

Search Techniques

Search Optimization

Low-Latency

Coherent Searches

Summary

𝔅 Typical BNS search uses $N_{\rm templates} ≈ 10^5 - 10^6$

$$N = \theta m^{-d/2} \int \sqrt{|g|} \, \mathrm{d}\lambda^d$$

Bandwidth

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitatior Wave Signals

Search Technique

Search Optimization

Low-Latency

Coherent Searches

Summary

Q: How do we choose the bandwidth we will search?²

"Trials factor"
$$\propto \int \sqrt{|g|} \, \mathrm{d}\lambda^d, \ \sigma^2 = 4 \int_{f_{\mathrm{low}}}^{f_{\mathrm{upper}}} \frac{|\tilde{h}(f)|^2}{S_n(f)} \, \mathrm{d}f$$

A: Reduce f_{low} until increasing trials factor balances increasing σ .

²Drew Keppel. *submitted to PRD* (2013). arXiv: **1**303. 2005. **E** • **E** • **O**

Bandwidth and Template Density

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitation Wave Signals

Search Technique

Search Optimization

Low-Latency

Coherent Searches

Summary

Q: What about computational limitations?³

- * $\downarrow f_{\rm low} \Rightarrow \uparrow T_{\rm waveform}$, $\uparrow \sqrt{|g|}$
- * $\uparrow m \Rightarrow \downarrow N_{\text{templates}}$

A: Balance bandwidth and template density to maximize sensitivity at fixed computational cost.

³Drew Keppel. *submitted to PRD* (2013). arXiv:1303.2005. = → = ∽ < ⊘

Low-latency

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitationa Wave Signals

Search Technique

Search Optimizatior

Low-Latency

Coherent Searches

Summary

- Can a GW event spur EM telescope observations?
- S EM counterparts can fade quickly
- S Minimize latency of reporting GW events

Filtering	FLOPs	Latency (s)
FIR	$1.2 imes 10^{12}$	$2.4 imes10^{-4}$
FFT	$2.5 imes10^5$	$1.1 imes10^3$

イロト イポト イヨト イヨト

LLOID Algorithm

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitationa Wave Signals

Search Technique

Search Optimization

Low-Latency

Coherent Searches

Summary

Several techniques are used to reduce computational costs:

- Remove redundant filters computations by SVD of templates⁴
- Construct composite detection statistic (CDS) to hierarchically reconstruct physical template SNRs⁵
- Use multirate filtering to reduce computational cost of lower frequency portions of waveform⁶

⁴Kipp Cannon et al. *Phys. Rev. D* 82.4 (2010), p. 044025.
 ⁵Kipp Cannon et al. *Phys. Rev. D* 83.8 (2011), p. 084053.
 ⁶Kipp Cannon et al. *The Astrophysical Journal* 748.2 (2012)₇ p. 136. .
 ⁶Kipp Cannon et al. *The Astrophysical Journal* 748.2 (2012)

LLOID Costs

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitation Wave Signals

Search Technique

Search Optimizatio

Low-Latency

Coherent Searches

Summary

Combinations of techniques can reduce both the computational cost and latency.

Filtering	SVD	Multirate	CDS	FLOPs	Latency (s)
FIR				$1.2 imes10^{12}$	$2.4 imes10^{-4}$
FFT				$2.5 imes10^5$	$1.1 imes10^3$
FFT	Х			$1.2 imes10^{6}$	$1.1 imes10^3$
FFT		Х		$4.9 imes10^5$	$5.2 imes10^1$
FFT	Х	Х		$2.0 imes10^5$	$5.2 imes10^1$
FFT	Х	Х	Х	$2.2 imes 10^4$	$5.2 imes10^1$
FIR	Х	Х	Х	$9.5 imes10^4$	$2.4 imes 10^{-4}$

Coherent Analysis

 \bigcirc

Confronting computational challenges in gravitationalwave searches

Drew Keppe

Overview

Gravitationa Wave Signals

Search Techniqu

Search Optimizatior

Low-Latency

Coherent Searches

Summary

Signal model based on four basis waveforms $\{h_{\mu}\}$ $s^{Y} = \mathcal{A}^{\alpha}h_{\alpha}^{Y}, \quad x^{Y} = n^{Y} + s^{Y}$ $\underbrace{\begin{array}{c|c} F_{(\cdot)}^{Y}h_{(\cdot)} & F_{+}^{Y} & F_{\times}^{Y} \\ \hline h_{0} & h_{1}^{Y} & h_{2}^{Y} \\ \hline h_{\pi/2} & h_{3}^{Y} & h_{4}^{Y} \end{array}}_{h_{\pi}/2}$

$$\mathcal{A}^{\mu}(D,\iota,\psi,\phi_{0}), \quad \mathcal{F}^{Y}_{(+ imes)}(lpha,\delta)$$

• Maximize log likelihood ratio $\sum_{Y} (x^{Y}|s^{Y}) - \frac{1}{2}(s^{Y}|s^{Y})$

$$\rho_{\rm coh}^2 = x_{\mu} \mathcal{M}^{\mu\nu} x_{\nu} =: 2\mathcal{F}, \quad x_{\mu} = \sum_{Y} (h_{\mu}^{Y} | s^{Y})$$
$$\mathcal{M}_{\mu\nu} := \sum_{Y} (h_{\mu}^{Y} | h_{\nu}^{Y}) = \begin{pmatrix} A & C & 0 & 0 \\ C & B & 0 & 0 \\ 0 & 0 & A & C \\ 0 & 0 & C & B \end{pmatrix}_{\mu\nu}$$

14 / 23

(1)

Comparing Network Analyses

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitationa Wave Signals

Search Technique

Search Optimization

Low-Latency

Coherent Searches

Summary

Coincident SNR

$$\rho_{\rm coi}^2 := \sum_{\mathbf{Y}} \rho_{\mathbf{Y}}^2$$

When mass and sky parameters of template match signal

$$\rho_{\rm coi}^2 = \rho_{\rm coh}^2$$

イロト イポト イヨト イヨト

15 / 23

* Coincident SNR is $\chi^2(2D)$ * Coherent SNR is $\chi^2(4)$

Coherent Metric Family

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitationa Wave Signals

Search Technique

Search Optimization

Low-Latency

Coherent Searches

Summary

The metric on *F* is given by a projected normalized Fisher matrix.⁷

$$g_{ab} = \frac{\sum_{Y} (\partial_{a} s^{Y} | \partial_{b} s^{Y})}{\sum_{Y} (s^{Y} | s^{Y})} \quad \Rightarrow \quad g_{ij}^{\mathcal{F}} = \frac{\mathcal{A}^{\alpha} \mathcal{G}_{\alpha\beta ij} \mathcal{A}^{\beta}}{\mathcal{A}^{\alpha} \mathcal{M}_{\alpha\beta} \mathcal{A}^{\beta}}$$

$$\begin{aligned} \mathcal{G}_{\mu\nu ij} = & h_{\mu\nu ij} - R_{\alpha\mu i} \mathcal{M}^{\alpha\beta} R_{\beta\nu j} \\ = & \begin{pmatrix} m_{ij}^1 & m_{ij}^3 & 0 & m_{ij}^4 \\ m_{ij}^3 & m_{ij}^2 & -m_{ij}^4 & 0 \\ 0 & -m_{ij}^4 & m_{ij}^1 & m_{ij}^3 \\ m_{ij}^4 & 0 & m_{ij}^3 & m_{ij}^2 \end{pmatrix}_{\mu\nu} \end{aligned}$$

 $\bigcirc g_{ij}^{\mathcal{F}}$ still depends on $\{\mathcal{A}^{\mu}(D, \iota, \psi, \phi_0)\}$

⁷Drew Keppel. *PRD* 86 (2012), p. 123010, □ > < ♂ > < ≥ > < ≥ > = ∽ < ⊙

Average Metric

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitation Wave Signals

Search Techniqu

Search Optimization

Low-Latency

Coherent Searches

Summary

How do we remove the amplitude dependence?

 \star average the extremal values of mismatch

$$ar{g}_{ij}^{\mathcal{F}} = rac{Bm_{ij}^1 + Am_{ij}^2 - 2Cm_{ij}^3}{2(AB - C^2)}$$

* marginalize over physical parameters⁸

$$\begin{split} \langle g_{ij}^{\mathcal{F}} \rangle &= \int \int \int \int \int \frac{\mathcal{A}^{\alpha} \mathcal{G}_{\alpha\beta ij} \mathcal{A}^{\beta}}{\mathcal{A}^{\alpha} \mathcal{M}_{\alpha\beta} \mathcal{A}^{\beta}} P(D) P(\iota) P(\psi) P(\phi_0) \, \mathrm{d}D \, \mathrm{d}\iota \, \mathrm{d}\psi \, \mathrm{d}\phi_0 \\ &\approx & \frac{m_{ij}^1 + m_{ij}^2}{A + B} \end{split}$$

(valid for both face-on and randomly oriented signals)

⁸Drew Keppel. *in preparation* (2013).

Metric Separation

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitationa Wave Signals

Search Technique

Search Optimizatior

Low-Latency

Coherent Searches

Summary

Four-dimensional metric depends on sky parameters and mass parameters

$\langle g_{ij}^{\mathcal{F}} angle$	$ \alpha$	δ	\mathcal{M}_{c}	η
α	1	-0.87	-0.010	-0.083
δ	-0.87	1	0.015	0.078
\mathcal{M}_{c}	-0.010	0.015	1	-0.87
η	-0.083	0.078	-0.87	1

Metric separable into 2 two-dimensional metrics⁹

⁹Drew Keppel. *in preparation* (2013). < □ > < □ > < ≥ > < ≥ > ≥ ∽ < ⊂

Sky Metric

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitationa Wave Signals

Search Techniques

Search Optimization

Low-Latency

Coherent Searches

Summary

 Sky metric mostly dependent on detector separation and bandwidth

イロト イポト イヨト イヨト

19/23

Solution N $\approx 10^3 - 10^4$ templates to cover sky

Mass Metric

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitationa Wave Signals

Search Technique

Search Optimization

Low-Latency

Coherent Searches

Summary

• Marginalization of SNR over amplitude and sky parameters $\langle \rho^2 \rangle \propto \sum_{Y} \langle (h^Y | h^Y) \rangle \propto \int \left\langle \left| \tilde{h}(f) \right|^2 \right\rangle \sum_{Y} \frac{1}{S_n^Y(f)} df$

Motivates synthetic detector with harmonic sum PSD
 This mass metric agrees with sky-marginalized \$\langle g_{ij}^F \rangle^{10}\$

¹⁰Drew Keppel. *in preparation* (2013). (□) (□) (□) (□) (□) (0) (0) (2012)

Computational Cost?

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitationa Wave Signals

Search Techniques

Search Optimization

Low-Latency

Coherent Searches

Summary

- Computational cost greatly increased compared to coincident search.¹¹
 - * \gtrsim 20 additional operations per output SNR sample per mass template per sky direction
- Reduction in minimal match can overwhelm gains from fewer DoF

¹¹Tito Dal Canton and Drew Keppel. *in preparation* (2013). (=)

Hierarchical Search

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitationa Wave Signals

Search Techniques

Search Optimization

Low-Latency

Coherent Searches

Summary

- Hierarchical coherent SNR construction reduces cost of coherent search¹²
 - * Coherent SNR computation fraction = 10^{-3}

¹²Tito Dal Canton and Drew Keppel. *in preparation* (2013). (=) (=)

Summary

Confronting computational challenges in gravitationalwave searches

Drew Keppel

Overview

Gravitationa Wave Signals

Search Techniques

Search Optimization

Low-Latency

Coherent Searches

Summary

- Computational costs considerations are important in designing GW searches
- Optimization can involve non-intuitive choices