Gravitational Wave Bursts and Multimessenger Astronomy

GOES-8 image produced by M. Jentoft-Nilsen, F. Hasler, D. Chesters (NASA/ Goddard) and T. Nielsen (Univ. of Hawaii)

What you've heard so far...

The Einstein field equations of GR have wave solutions !

- Emitted by a rapidly changing configuration of mass
- Travel away from the source at the speed of light
- Change the effective distance between inertial points i.e. the spacetime metric — transverse to the direction of travel

Looking at a fixed place in space while time moves forward, the waves alternately *stretch* and *shrink* the space

What you have heard so far...

The Global GW Detector Network in the Recent Past

LIGO Noise vs. Frequency – So Far

Gravitational Wave Sources...

...and the LSC ((O))VIRG working groups

	Long duration			
Waveform known	Cosmic string cusp / kinkNS / BH ringdownLow-mass inspiralCompact binary inspirals 	Asymmetric spinning NS Continuous wave		
Waveform unknown	Binary mergerRotation-driven instabilityUnmodelled burstsStellar core collapse????????????	Cosmological stochastic background Stochastic Astrophysical stochastic background		

Gravitational Wave Burst Searches

We're listening to the whole sky – who knows what's out there?

• Models are OK, but don't put *too* much faith in them!

Goal: be able to detect any signal

- ... if it has sufficient power within the sensitive frequency band of the detectors
- ... and is "short"

Target Signals for GW Burst Searches

Modelled burst search

Targets:

- Black hole ringdown
- Neutron star ringdown, pulsar glitches
- Cosmic string cusp

Use matched filtering

Issues generally similar to binary inspiral searches

Generic burst search

Targets:

- High-mass binary black hole merger
- Long duration GRBs/collapsars
- SGR flares (magnetars/AXPs)
- Core collapse supernova
- Signals deviating from model expectations (i.e. alternative models of gravity (e.g. Brans-Dicke theory))
- Other unexpected or unmodelled sources

Use robust detection methods that do not rely on having a model of the signal

All-sky, all-times search

Analyse all available data for GW bursts arriving from any direction

Externally triggered searches

Analyse GW data more deeply using information from:

- Known astrophysical events (GRBs, magnetar flares, pulsar timing glitches...)
- Candidate transient signals (high-energy neutrinos, radio bursts, ...)

All-sky GW search with rapid EM follow-up

Reconstruct apparent sky positions of GW event candidates Try to catch optical, X-ray, and/or radio transient counterpart

Assuming that general relativity is correct, Each detector measures a linear combination of $h_{+}(t) \& h_{\times}(t)$

 \Rightarrow Data from 2 sites can uniquely determine $h_+(t)$ and $h_{\times}(t)$ for an arbitrary signal, in the absence of noise and if the arrival direction is known

 \Rightarrow Data from 3 or more sites *over-determines* $h_+(t)$ and $h_{\times}(t)$ if the arrival direction is known

Geometric View of Coherent Analysis

F is the antenna response matrix and x is the data vector on slide 11

Treat this as a maximum likelihood problem

Find most likely $h_+(t) \& h_\times(t)$, maximizing over arrival directions Regulator penalizes physically unlikely signal hypotheses

Decompose data stream into time-frequency pixels

- Fourier components, wavelets, "Q transform", etc.
- Several implementations of this type of search

Normalize relative to noise as a function of frequency

Look for "hot" pixels or clusters of pixels

Frequency

Can use multiple $(\Delta t, \Delta f)$ pixel resolutions

S(f0) is the noise power spectrum from slide 5 evaluated at the central frequency of the signal

Crucial since a GW burst in a single detector may look just like an instrumental glitch !

Coincidence

Require signals in different detectors to have compatible times, frequencies, amplitudes and/or other waveform properties

Cross-correlation

Look for same signal buried in two data streams

Checks for consistent *shape*, regardless of relative amplitude Rejects background noise fluctuations

Best to integrate over a time interval comparable to the target signal

Data Quality and Vetoes

We need to be robust against non-stationary noise

Solution: Data quality and Vetoes

Rate [events/sec/bin]

Reduce trigger rate, possibly allow thresholds to be lowered, and help us judge whether an event candidate may be real

- Background from time slides
- Efficiency estimated by adding simulated signals to the data
- Tune search parameters to maximise efficiency at fixed false alarm rate
- Reanalyse with artificial dealys (>>1s) between detectors
- Any resulting 'events' are non GW in origin

Analysed all LIGO and Virgo collected since 2005 when at least two detectors were running

Total live observation time: 636 days

LIGO+Virgo coherent analysis

GEO data often available for investigating possible event candidates

Sensitive to arbitrary GW signals in the range 64–5000 Hz

Background measured by analyzing data with artificial time shifts Event selection thresholds tuned for low false alarm probability

No event survived all selection cuts

We set upper limits on burst rate vs. amplitude for representative waveforms using Monte Carlo

Abadie et al., PRD, arXiv:1202.2788

All Sky Burst Search Results

FIG. 5: Upper limits at 90% confidence on the rate of gravitational-wave bursts at Earth as a function of $h_{\rm rss}$ signal amplitude for selected sine-Gaussian waveforms with Q = 9. The results include all the LIGO and LIGO-Virgo observations since November 2005.

For simulated signals with random times and sky positions added to real detector noise

20

GW energy emission assuming a Galactic source (10 kpc) that could have been detected with 50% efficiency

Search Sensitivity in Energy Units

- Core-collapse supernovae are around 1e-8 1e-7 Msun (typically) up to 1e-4 Msun (extreme cases) emitting between 100-1000 Hz
- SGR flares are <~ 1e48 erg (probably less) around 1000 Hz
- BNS and extreme long GRB models can give 1e-2 Msun around 100-200 Hz.

Cosmic String Burst Search

Cosmic strings are topological defects left over from the early universe

May form in phase transitions, or come directly from string-theory cosmological models

Cosmic strings are expected to have *cusps* which emit strong bursts of GWs

Known waveform → can use matched filtering

Externally Triggered (extTrig) Burst Searches

Multi-messenger Advantages

If an event has already been detected, then GW searches:

- know <u>when</u> to look at the data
- know *where* in the sky to look
- may know *what kind* of GW signal to search for
- may know the distance to the source

As a result,

- Background is suppressed, so a weaker GW signal can be confidently detected
- The extra information from the combined observations will reveal more about the astrophysics of the source
- <u>Non</u>-detection of a GW signal can still provide useful information

Example

Radio Sky

- $\lambda \sim 10^3 \text{ m}$
- Molecular clouds, (Masers),
 CMB, quazars,
 Pulsars
- Transmitted through atmosphere

Infrared Sky

- $\lambda \simeq 10^{-5} \text{ m}$
- Dust, probe interstellar environment
- Partially transmitted through atmosphere

Gamma-Ray Sky

- $\lambda \simeq 10^{-12} \text{ m}$
- Gamma-ray bursts, pulsars, supernovae, cosmic rays
- Completely absorbed by atmosphere

Gamma-Ray Bursts

- Gamma-ray bursts: isotropically distributed bursts of γ-rays (~100keV), ~once a day
- First detection in 1967 from Vela satellites (monitoring nuclear tests)
- Characterised by duration and spectral hardness
 - Long (>2s), soft spectra (lower energy photons)
 - Short (<2s), hard spectra (higher energy photons)

GRBs

Multi-Messenger Bursts: Emission Mechanisms

Gamma rays

• From "internal" or "external" shocks

X-ray afterglow

- "Fireball model" expands into local medium
- Typically stronger for long GRBs than for short

Optical afterglow

- Supernova or supernova-like emission
- Reprocessing of energy by local medium

Radio afterglow

High-energy neutrinos

Expected from accelerated protons in shocks

Gravitational waves

Should be detectable <u>if</u> source is really close, especially for short GRBs

Can indicate host galaxy !

Reveal central engine !

GRB 070201

Short, hard gamma-ray burst

Leading model for short GRBs: merger involving a neutron star

Position was consistent with being in M31 (Andromeda galaxy)

Both LIGO Hanford detectors were operating

Searched for inspiral & burst signals

No plausible GW signal found → very unlikely to be a merger in M31 Abbott et al., ApJ 681, 1419 (2008)

Similar analysis done for GRB 051103 Abadie et al., arXiv:1201.4413

Systematic GRB GW Burst Search

Both long and short GRB progenitors could emit detectable GWs

Short: binary mergers, neutron star quakes Long: massive star core collapse

Huge energy release

Can be ~ 10^{51} erg in gamma rays !

Redshifts known for *some* GRBs, but not most

Could include an occasional nearby, low-luminosity GRB?

Previously published search results:

S2/S3/S4 LIGO – 39 GRBs Abbott et al., PRD 77, 062004 (2008) S5/VSR1 LIGO+Virgo – 137 GRBs Abbott et al., ApJ 715, 1438 (2010)

Searched over sky region reported for the GRB

GRBs detected by Fermi GBM have large error regions Also GRBs reported by *Swift* and other satellites

Time window allowed for relative time offset from GRB trigger

Figure courtesy of M. Wąs

"Off-source" time used to measure background GW trigger probability in detector data with similar properties

S6/VSR2+3 Search Results

No individual GRB stands out compared to the background

No subset of the most significant GRBs stands out either

Consistent with uniform distribution

arXiv 1205:2216

GRB Progenitor Exclusion Distances

Assuming binary inspiral but using unmodeled burst search*

* Expect matched filtering search to have a factor of ~2 better sensitivity for binary inspiral signals

Soft Gamma Repeater (SGR) Flares

SGRs are believed to be magnetars

- Neutron stars with magnetic field ~10¹⁵ G interacting with crust
- Anomalous X-ray pulsars (AXPs) are essentially the same thing

Occasionally emit flares of soft gamma rays

• Ordinary flares $E_{EM} \sim 10^{42} \text{ erg}$

Some SGRs have produced a giant flare with energy ~10⁴⁶ erg

Thought to be associated with cracking of the crust

- Probably excite vibrational modes of the neutron star
- Quasiperiodic oscillations seen in X-ray emission after giant flares

Some vibrational modes couple to gravitational waves !

• Can probe what is going on with the star

Searches for GW Signals from Magnetars

Long-lived quasiperiodic GWs after giant flare ?

- December 2004 giant flare of SGR 1806–20
- Searched for GW signals associated with X-ray QPOs
- GW energy limits are comparable to total EM energy emission
 Abbott et al., PRD 76, 062003 (2007)

GW bursts at times of flares ?

- 2004 giant flare plus 190 other flares from SGR 1806–20 and SGR 1900+14 during first calendar year of LIGO S5 run
- Excess-power search for neutron star *f*-modes ringing down (~1.5–3 kHz), also for arbitrary lower-frequency bursts
- For certain assumed waveforms, GW energy limits are as low as few × 10⁴⁵ erg, comparable to EM energy emitted in giant flares

Abbott et al., PRL 101, 211102 (2008)

Searches for GW Signals from Magnetars

Repeated GW bursts associated with multiple flares ?

• "Storm" of flares from SGR 1900+14 on 29 March 2006

- "Stack" GW signal power around each EM flare
- Gives per-burst energy limits an order of magnitude lower than the loudestevent analysis —as low as few × 10⁴⁵ erg

Abbott et al., ApJ 701, L68 (2009)

Abadie et al., ApJ734, L35 (2011)

More flares, new magnetars

- Including SGR 0501+4516 at ~1–2 kpc
- Closer source gives sensitivity to lower energies !
- Hoping for a giant flare from a nearby SGR

Pulsar Glitches

Some pulsars exhibit "glitches" in pulse frequency

Mechanism for glitches is unclear

- Crust cracking?
- Coupling of differentially rotating crust and core?
- Rearrangement of superfluid vortices?

May excite quasinormal vibrational modes

• Some modes couple to GW emission !

Searches done – Abadie et al., ApJ 737 L93 (2011)

Vela pulsar glitch in August 2006 : $\Delta v/v = 2.6 \times 10^{-6}$

Supernovae

Several possible GW emission mechanisms

- Rotating collapse and bounce
- Rotational instabilities
- Convection

. . .

- Standing accretion shock instability
- Protoneutron star *g*-modes

Review: C. D. Ott, Classical & Quantum Gravity 26, 063001 (2009)

Relative strength of GW emission mechanisms depends on what drives the supernova explosion

• Leading possibilities: MHD with rotation, neutrinos, acoustic waves

➔ Detection or non-detection of GWs can distinguish !

• Especially in conjunction with neutrino signal

Current detectors can probably only see SNe in our galaxy

• Advanced detectors may go out to a few Mpc – non-negligible rate

Neutrinos

Many EM-GW sources potentially missed:

- EM signature of many sources may be tightly beamed (e.g., pulsars, GRBs) so we miss the EM signal
- Absorption in interstellar/galactic medium

Neutrinos: expect neutrino emission from supernovae, GRBs, SGRs. Also potentially have v emission from prompt stellar collapse to black hole (otherwise invisible) or from 'fizzled' SNe

Neutrino detectors have ~1° field of view, point on the sky, GW detectors have ~5° field of view.

Perform coincidence analysis using neutrino sky-location, time of trigger

Relation between v trigger time & GW emission uncertain: use multiple coincidence windows

Seeking Electromagnetic Counterparts with Rapid Follow-up Observations

GW sources release a lot of energy

e.g. compact binary merger: $\sim 10^{53}$ erg or more

Many ways for *some* of that energy to go into EM emissions

Relativistic jets with internal or external shocks[Piran, RMP 76, 1143]Radioactive decay of ejected material[Metzger et al., MNRAS 406, 2650]Magnetic field rearrangement[Thomson & Duncan, ApJ 561, 980]Plasma excitation by GWs[Moortgat & Kuijpers, PRD 70, 023001]Poynting flux from orbit in B field[McWilliams & Levin, arXiv:1101.1969]

Likely to be detectable *if* an appropriate telescope is pointed in the right direction at the right time

Optical and radio surveys only cover part of the sky at any given time

Multiple benefits:

Confirm a GW event candidate \rightarrow confidently detect weaker events Obtain more comprehensive optical, X-ray and/or radio observations Get information about the progenitor and astrophysics

EM Follow-ups: The Basic Idea

We analyze GW data from 3 sites to find possible candidates

A 2 detector site is unable to provide satisfactory sky localisation

First Implementation: 2009–2010

LUMIN and GEM selected significant event candidates, alerted humans (on call 24/7 in shifts) to complete manual validation, chose target coordinates and communicated with telescopes

LSC+Virgo+others, A&A in press, online at DOI: 10.1051/0004-6361/201118219

Burst Search

Two search algorithms: *Coherent WaveBurst* and *Omega Pipeline* Sensitive to essentially any signal with duration up to ~1 s

Fully coherent analysis considering all possible sky positions

Inspiral Search

Search algorithm: *MBTA* (multi-band template analysis)

Consider binaries with at least one neutron star

Coincidence analysis, then use relative arrival times of triggers to triangulate sky position

Each search pipeline calculates a detection statistic Background estimated using time-shifted data Search output: "triggers" with event time, significance (false alarm rate), sky probability map

Check that nothing out of the ordinary is happening at the sites which could cause us to question the data

Observing Partners During 2009–2010

Mostly (but not all) robotic wide-field optical telescopes

Many of them used for following up GRBs, surveying for supernovae and other optical transients

Use positions of known galaxies within 50 Mpc

[White et al., CQG 28, 085016]

Weight by blue light luminosity, and inversely by distance MBTA: only consider galaxies closer than measured effective distance for the trigger

The sky position error region may contain many hundreds of galaxies, therefore we need a way of ranking them

Since nearby galaxies are thought to be the most likely host of observable sources, we use a galaxy catalogue (GWGC (White et al. 2011)) and restrict ourselves to the distance our detectors can see (~ 50 Mpc)

Galaxies are weighted similar to:

$$R = e^{-\frac{\chi^2}{2}} \frac{L}{d}$$

L - luminosity of the galaxy d - distance to the galaxy X² - chi-squared match between the measured and predicted arrival time of the signal in each detector

Nuttall and Sutton, 2010, Physical Review D. 82, 102002

- We use the time delays between the 3 interferometers to construct a sky position error region
- The error region is ~1-4 deg² for a "loud" event and anywhere between 20-100 deg² for a "quiet" event

The moon is ~ 0.2 deg² and the whole sky is $\sim 40,000$ deg²

How often do we pick the right galaxy?

ADVANCED LIGO: If we were to group galaxies and image the top 5 potential groups the chances of imaging the right group are between ~70% and ~90%

Some Excitement: Sept. 16, 2010

2:50 a.m. EDT: My cell phone beeps — it's a LUMIN alert

LUMIN Events Page											
Id	GPS	DQ	Energy	Event Rate	Frequency	Status	Scopes	View Times	Trigger Details	ETG	Checklist
<u>G1937</u> 7	968654557.950	<u>Clear</u>	ρ = 4.338	0.00 Events/day	176.3 Hz	alert	Text: $\underline{PT} \ \underline{\pi} \ \underline{Q} \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z}$ Plot: $\underline{PT} \ \underline{\pi} \ \underline{Q} \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z}$	<u>plot</u>	<u>Details</u>	<u>cwb</u> classic	GO G19377
<u>G19375</u>	968653612.555	<u>Clear</u>	Ω = 2.64	51.20 Events/day	620.5 Hz	processed	Text: $\underline{PT} \ \underline{\pi} \ \underline{Q} \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z}$ Plot: $\underline{PT} \ \underline{\pi} \ \underline{Q} \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z}$	<u>plot</u>	<u>Details</u>	omg	
<u>G19373</u>	968652026.594	<u>Clear</u>	Ω = 2.69	34.13 Events/day	429.0 Hz	processed	Text: $\underline{PT} \ \underline{\pi} \ \underline{Q} \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z}$ Plot: $\underline{PT} \ \underline{\pi} \ \underline{Q} \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z}$	<u>plot</u>	<u>Details</u>	omg	
<u>G19374</u>	968651665.369	<u>Clear</u>	Ω = 2.64	49.70 Even's/day	1387.6 Hz	processed	Text: $\underline{PT} \ \underline{\pi} \ Q \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z}$ Plot: $\underline{PT} \ \underline{\pi} \ Q \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z}$	<u>plot</u>	<u>Details</u>	omg	
<u>G19371</u>	968651363.119	<u>Clear</u>	ρ = 3.151	1.69 Events/day	1619.2 Hz	processed	Text: $\underline{PT} \ \underline{\pi} \ Q \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z}$ Plot: $\underline{PT} \ \underline{\pi} \ Q \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z}$	<u>plot</u>	<u>Details</u>	<u>cwb</u> linear	
<u>G19370</u>	968651228.193	<u>Clear</u>	Ω = 2.71	31.05 Events/day	915.1 Hz	processed	Text: $\underline{PT} \ \underline{\pi} \ \underline{Q} \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z}$ Plot: $\underline{PT} \ \underline{\pi} \ \underline{Q} \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z}$	<u>plot</u>	<u>Details</u>	omg	
<u>G19363</u>	968647079.328	<u>Clear</u>	Ω = 2.80	14.47 Events/day	420.5 Hz	processed	Text: $\underline{PT} \ \underline{\pi} \ \underline{Q} \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z}$ Plot: $\underline{PT} \ \underline{\pi} \ \underline{Q} \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z}$	<u>plot</u>	<u>Details</u>	omg	
<u>G19351</u>	968643536.786	<u>Clear</u>	ρ = 2.939	1.33 Events/day	1147.1 Hz	processed	$\begin{array}{c} \text{Text:} \underline{PT} \ \underline{\pi} \ \underline{Q} \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z} \\ \text{Plot:} \ \underline{PT} \ \underline{\pi} \ \underline{Q} \ \underline{Ra} \ \underline{Rb} \ \underline{Rc} \ \underline{Rd} \ \underline{S} \ \underline{TN} \ \underline{TS} \ \underline{Z} \end{array}$	<u>plot</u>	<u>Details</u>	<u>cwb</u> linear	

968654557.950 Clear	ρ = 4.338	0.00 Events/day
---------------------	-----------	-----------------

What Does the Signal Look Like?

Coherent WaveBurst time-frequency pixel maps:

Likelihood detection statistic:

What could it be?

- A binary black hole inspiral / merger
- A noise fluctuation
- A "blind injection" (simulated signal injected into the interferometer)

Coherent WaveBurst probability sky map:

Regions Imaged by Telescopes

Modest significance in GW burst search, but highly significant in matched filter inspiral search

Over the winter:

- Refined background estimation techniques

 – estimated 1 in 7000 y
- Did binary parameter estimation studies
- Wrote and polished a Phys Rev Letter

Finally "opened the envelope" last March... It <u>was</u> a blind injection

For more of the story: http://www.ligo.org/news/blind-injection.php

Advanced LIGO

Projected Performance of Advanced LIGO

Factor of ∼10 better amplitude sensitivity than initial detectors → Factor of ~1000 greater volume of space

Advanced GW Detector Network, Circa 2020

Localisation

Localisation

All results assume a rate of 40 events per year at SNR 8 or higher in a single detector

Summary

Gravitational wave observing has begun

Initial interferometric detectors operated successfully for a number of years Many results published — upper limits and astrophysical interpretations Including very inclusive searches for BW bursts Rapid EM follow-up project was a highlight of the most recent science run

Currently upgrading to Advanced LIGO & Advanced Virgo

Expected to start taking science data in ~2015

KAGRA will join the network later

Preparing for detections

Calls for a change in mindset

Planning for follow-up observations to get as much information as possible about these remarkable astrophysical events