

Numerical Relativity

Outline

- General Relativity (GR) refresher
- Exact solutions
- (A few remarks about) Black Holes
- Numerical Relativity
- Gravitational Waves & Astrophysics

General Relativity in a nutshell

- Gravity is represented as a geometric property (curvature) of a 4D manifold (spacetime) (M,g)
- Matter/energy curves flat spacetime
 - Coupling between the geometry, g, and the energy content, T, described by Einstein field equations:

$$R_{ab} - \frac{1}{2}g_{ab}R = 8\pi T_{ab}$$

- Mathematically elegant but:
 - 10 coupled non-linear second-order PDEs

. . . .

Exact solutions of the field equations

- Only very few exact solutions are known:
 - − *Minkowski*: flat, empty → Special Relativity
 - Schwarzschild (1916): unique spherical symmetric vacuum solution
 - Kerr (1963): axisymmetric vacuum solution
 - Friedmann-Lemâitre-Robertson-Walker

- Karl Schwarzschild 1916
- Solution *outside* any static spherical symmetric mass distribution (sun, etc.), i.e. vacuum solution

• Solution:
$$ds^2 = -\left(1 - \frac{2M}{R}\right)dt^2 + \left(1 - \frac{2M}{R}\right)^{-1}dR^2 + R^2d\Omega^2$$

- M is the mass of the body
- for M=0 we recover Minkowski space
- Time-independent (static)
- Spherically symmetric

The Schwarzschild solution

• Far from the body, we can expand the metric as:

$$ds^{2} \approx -\left(1 - \frac{2M}{R}\right)dt^{2} + \left(1 + \frac{2M}{R}\right)dR^{2} + R^{2}d\Omega^{2}$$

- Schwarzschild spacetime is asymptotically flat →
 we recover Minkowski space
- Close to the mass distribution, strange things happen

The Schwarzschild solution

• At R=2M, the metric diverges (g_{tt} =0 and $g_{rr} \rightarrow \infty$)

Coordinate singularity

- BUT: At R=0, the metric diverges as well → real physical singularity !
- R=2M is still "special": Schwarzschild radius: R_s≈3km for the sun
 - R>2M: light rays can escape
 - R=2M: light rays stay there: event horizon
 - R<2M: light rays fall back and cannot escape
 - \rightarrow Black Hole

Black Holes

- Physical spacetime singularity
- May be formed when matter undergoes gravitational collapse
- Compact regions in spacetime
- Different types: Schwarzschild, Kerr, Reissner-Nordström, Kerr-Newman

Astrophysical Black Holes

- Expect most BH to be Kerr, i.e. *spinning*
- Evidence for super-massive BHs in the centres of galaxies
- Binary black holes (BBH) assumed to form in globular clusters and old galaxies
- BBHs, colliding BHs are promising sources of gravitational waves

www.eso.org

- Analytic solutions of the field equations only known in a handful of cases
- NO analytic solution for the binary black hole problem ! (and many other astrophysical spacetimes)
- We need to solve the Einstein equations on a supercomputer to solve these problems in full General Relativity and to extract the desired information, e.g. gravitational waves

- Successful numerical evolution of binary black hole spacetimes possible since 2005 (Pretorius, PRL 95(2005) 121101)
- Allows the *accurate* modelling of the complete inspiral-merger-ringdown signal

- What astrophysics can we do with numerical relativity ?
 - Gravitational waves
 - Final mass and spin of the remnant BH (necessary for understanding BH population in the universe)
 - Gravitational recoil

- 4D spacetime mathematically very elegant but very inconvenient for numerical techniques
- Need to reformulate the Einstein equations as initial value problem (IVP):
 - There exists a (mathematically) well-posed IVP for GR (Y. Choquet-Bruhat, 1950s)

Numerical Relativity - Basics

- 3+1 decomposition \rightarrow
 - constrained IVP
 - 6 evolution equations
 - 4 constraint equations
 - Gauge conditions for the coordinate evolution
- Variables: $(\gamma_{ij}, K_{ij}), (\alpha, \beta^i)$
- Produce "meaningful" initial data for a configuration

M. Alcubierre: Introduction to3+1 numerical relativity

The 3+1 decomposition (vacuum)

Choose a basis → decomposed metric:

 $ds^{2} = \left(-\alpha^{2} + \beta_{i}\beta^{i}\right)dt^{2} + 2\beta_{i}dtdx^{i} + \gamma_{ij}dx^{i}dx^{j}$

• Data on one time slice

 $\left\{\gamma_{ij}, K_{ij} \propto \partial_t \gamma_{ij}\right\}$

must satisfy the constraints

$$R + K^{2} - K_{ij}K^{ij} = 0$$
$$D_{j}K^{ij} - \gamma^{ij}D_{j}K = 0$$

• Given (α, β^i) go to next slice with evolution equations

 $\begin{aligned}
\partial_t \gamma_{ij} &= -2\alpha K_{ij} + D_i \beta_j + D_j \beta_i \\
\partial_t K_{ij} &= -D_i D_j \alpha + \alpha \left(R_{ij} - 2K_{ik} K_j^k + K K_{ij} \right) + \beta^k D_k K_{ij} + K_{ik} D_j \beta^k + K_{kj} D_i \beta^k
\end{aligned}$

- The physics is the same in all coordinates but if you solve on a computer, coordinates matter:
 - Different coordinates have different numerical properties
 - Some coordinates allow to obtain an accurate solution more easily
 - Not all coordinates allow a stable numerical
 evolution → you might not get a solution at all !

Initial Data

- Have to specify gravitational fields (γ,K) on some initial spatial slice Σ₀ that satisfy the constraint equations
- Constraints determine 4 out of 12 independent components → 8 undetermined !
- 4 of these 8 are related to coordinate choices (freely specifiable variables)
- 4 represent the dynamical DOF of a gravitational field in GR → 2 polarisations of gravitational waves
- Difficult task for general spacetimes !

- Free vs. constrained evolution
 - Free: solve constraint equations initially and evolve with evolution equations
 - Bianchi identities assure that evolved data satisfy constraints at later times (exact statement)
 - Monitor constraint violation !
 - Constrained: solve constraint equations at each time step t for a subset of variables and evolve the remaining ones with the evolution equations

- ADM formulation is numerically unstable
 - Reformulation for numerical implementation needed: BSSN (Baumgarte, Shapiro, Shibata and Nakamura)
- Alternatives to the 3+1 approach:
 - Characteristic evolution (light cones)
 - Conformal evolution (hyperboloidal slices)
 - Full 4D spacetime evolution (adequate choice of coordinates to expand Einstein eqn.)

Numerical Relativity

Visualisation by the SXS Collaboration, www.black-holes.org

Summary

• Only very few exact solutions to GR known

- Schwarzschild, Kerr, FRWL, ...

- Use approximate solving methods → Numerical Relativity
- 3+1 approach: separate space and time to formulate initial value problem
- Construct physical initial data and make appropriate gauge choices

A brief history of BBH simulations

- 1960s: First attempts to simulate BHs on a computer
- 1960 and 1970s: 3+1 formulation, some gauge conditions
- 1980s and 1990s: initial data for multiple BHs
- 1990s: resources to run full 3D simulations
 - But still no long-term evolutions of binary mergers !
- 2005: Breakthrough !

The Breakthrough

- Frans Pretorius (2005):
 - Generalised harmonic slicing
 - Moving excision
 - Compactified spatial domain to simplify boundary conditions
 - "constraint damping"
- UT-Brownsville and NASA-Goddard (2005):
 - Standard BSSN with puncture initial data
 - 1+log and Γ-driver gauge conditions
 - Modified treatment of the conformal factor
 - "moving" punctures

Progress & Results since 2005

- Progress:
 - Simulations became longer and covered more orbits
 - Simulations became more accurate
 - Higher order finite differencing, pseudo-spectral methods
 - Radiation extraction at larger distances
 - Greater code efficiency: from mesh-refinement to multipatch
- Physics & Astrophysics:
 - Parameter (mass, spin) of final remnant BH
 - High energy BH collisions
 - Gravitational waveforms
 - Gravitational recoil
 - Formation of accretion discs ...

Gravitational Waves

- Why are we looking for gravitational waves from BBH ?
 - Amongst the most promising sources for LIGO/Virgo
 - Exploring the dark side of the universe: in a matter-free system, NO EM counterparts
 - GWs are like the DNA of binary systems: revealing the physical properties (mass, spin) of the objects
- How are we looking for gravitational waves from BBH ? Accurate waveform templates for matched filtering technique & astrophysics !
 - Large BBH parameter space to cover
 - *Phenomenological description* of generic systems required

- How do we extract the gravitational wave signal in a numerical relativity simulation ?
- Numerical simulation uses specified coordinates but we want the GW signal in a gauge-invariant way !
 - Moncrief formalism
 - Decompose metric in spherical harmonics and combine in a gauge-invariant way
 - Newman-Penrose formalism
 - Project Weyl tensor on a null tetrad \rightarrow Weyl scalars
 - 2 scalars can be interpreted as ingoing and outgoing gravitational radiation

BBH & Gravitational Waves

- Binary motion in three stages:
 - Inspiral: post-Newtonian approximation technique
 - Merger: ???
 - Ringdown: perturbation theory (LRR Kokkotas, Schmidt)
- M between 25M_☉ and 100 M_☉ → merger and ringdown "in band"
- We need to solve the full Einstein equations numerically to obtain the merger waveform !

Impression by Kip Thorne

Gravitational Waves: after 2005

- This complete picture allows us to model the full signal emitted by binary configurations
 - Different approaches:
 - Semi-analytic phenomenological description of the signal
 - Effective One Body approach (EOB)
 - \rightarrow Combine analytical and numerical information
- Improves
 - Detectability
 - Parameter estimation
 - Astrophysical understanding !

Gravitational Waves

- Complete inspiral-mergerringdown waveforms enhance detectability
- Until now, accurate IMR description of:
 - Non-spinning binaries
 - Binaries with (anti-)aligned spins
- A lot left to do:
 - Eccentric, precessing binaries
 - Neutron star BH binaries
 - Supernovae

Gravitational Recoil

- Gravitational recoil:
 - GW carry energy, linear and angular momentum
 - Asymmetric GW emission combined with inspiral → net momentum loss
 → the system will spiral outwards !
 - After merger the emission switches off and the final BH recoils
 - Kick velocities up to 4000 km/s !
 - Could explain extra-galactic BHs and has influence on formation models

- Most BH-binaries will be inside galaxies
- If the recoil velocity is large enough → final BH can escape its host galaxy
- Highest galactic escape velocity is ~2000km/s (giant elliptic galaxy)
- If recoil large enough → effect on galactic BH populations
- Also creates a population of "wandering" extragalactic BHs

Gravitational Recoil: calculations

- Effect first discussed in the 1960s.
- Gravitational collapse calculations (1970s): 20-300 km/s
- Fitchett (1983):
 - Considered circular orbits of Newtonian point particles
 - Max. kick velocity: 100s or 1000s of km/s
 - Max. kick velocity for a mass ratio of ~2.6.
- 1992-2006: Post-Newtonian calculations
 - Expansion of the Einstein equations on powers of v/c
 - Estimates are generally lower than Fitchett's
 - "best" PN estimate: max. between 50 and 500km/s
 - Large uncertainty and crucial merger and ringdown phase not included !

Approximate methods \rightarrow full calculation needs NR !

- When NR simulations were possible ...
 - Unequal mass nonspinning binaries:
 - Max. recoil of 175±11km/s
 - Max. recoil is at mass ratio 2.78
 - BH ejection seems to be very unlikely ...
 - Spinning binaries:
 - Aligned spins: recoil up to 500km/s !
 - Spins in the orbital plane (equal & opposite): recoil out of the plane with a velocity up to 4000km/s !

Current research

- Investigation of improved numerical methods to improve efficiency and accuracy of numerical simulations
- Construction of initial data for binaries with high spins
- Achieving simulations of high mass ratios
- Waveform production to allow waveform modelling
 - Generic spins \rightarrow precession, eccentricity
- Studying the interaction with matter, electric and magnetic fields:
 - Neutron star binaries, neutron star black hole binaries:
 - Testing the equation of state of neutron star matter
 - Formation of accretion discs and jets
- Cosmology