Underlying maths 00000 GR description of gravity 0000

GENERAL RELATIVITY

Project student lectures - 2013

Frank Ohme

Cardiff University

07/10/2013

Underlying maths 00000

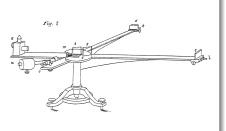
GR description of gravity 0000

Schedule

Торіс	Lecturer	Date
General Relativity	Frank Ohme	07/10
Gravitational Waves (GWs)	Frank Ohme	10/10
GW detectors	Tom Adams	14/10
GW Bursts	Tom Adams	17/10
Compact Binary Coalescences	Erin Macdonald	21/10
Multi-Messenger Astronomy	Erin Macdonald	24/10
Numerical Relativity I	Patricia Schmidt	28/10
Numerical Relativity II	Patricia Schmidt	31/10

æ

ヘロト 人間 トイヨト イヨト


Basic principles •000000 Special Relativity Underlying maths

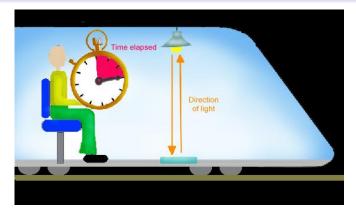
GR description of gravity 0000

Special Relativity

Maxwell's equations describing electrodynamics show that *light* travels at a finite velocity

- Reference frame/medium for light ("Aether")?
- Michelson & Morley showed that there is no preferred reference frame.

Einstein's special relativity


- Space and time unified in *spacetime*
- Speed of light is constant, same for all observers

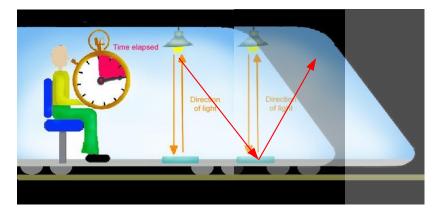
Underlying maths

GR description of gravity 0000

Special Relativity

Conclusions from the constant speed of light

• From inside: time measured by light beam going up and down, no way of telling whether the train is moving at constant speed


4 E b

Underlying maths

GR description of gravity 0000

Special Relativity

Conclusions from the constant speed of light

• From outside: light travels a longer path but with the *same* speed ⇒ takes longer

Basic principles	
000000	
Special Relativity	

Underlying maths

GR description of gravity 0000

The passenger could, of course, tell that the train is moving if

• • •

◆□▶ ◆□▶ ◆□▶ ◆□▶

æ

Basic principles	
000000	
Special Relativity	

Underlying maths 00000 GR description of gravity 0000

The passenger could, of course, tell that the train is moving if \dots

the train is accelerating/decelerating!

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

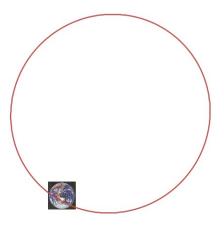
글 🕨 🖌 글 🕨

Underlying maths

GR description of gravity 0000

How does gravity fit in?

- Gravity does not fit within Special Relativity
- Gravity acts instantaneously


A D > <
 A P >
 A

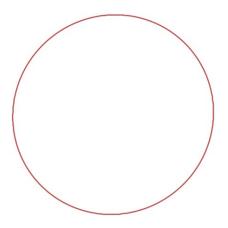
Underlying maths

GR description of gravity 0000

How does gravity fit in?

- Gravity does not fit within Special Relativity
- Gravity acts instantaneously
- Gedankenexperiment:
 - Take the sun away.

Underlying maths


GR description of gravity 0000

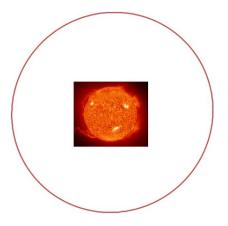
How does gravity fit in?

- Gravity does not fit within Special Relativity
- Gravity acts instantaneously

Gedankenexperiment:

- Take the sun away.
- The earth immediately flies off.

Underlying maths

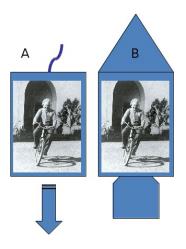

GR description of gravity 0000

How does gravity fit in?

- Gravity does not fit within Special Relativity
- Gravity acts instantaneously

Gedankenexperiment:

- Take the sun away.
- The earth immediately flies off.
- However, sun still visible for 8 mins.


Basic principles 0000000 Accelerated frames Underlying maths

GR description of gravity 0000

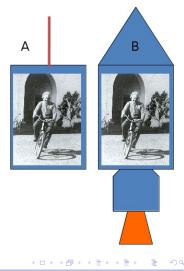
Einstein's thoughts

There is no way to tell the difference between

- A freely falling elevator and
- zero gravitational field in deep space,

Basic principles 0000000 Accelerated frames Underlying maths

GR description of gravity 0000


Einstein's thoughts

There is no way to tell the difference between

- A freely falling elevator and
- zero gravitational field in deep space,

or

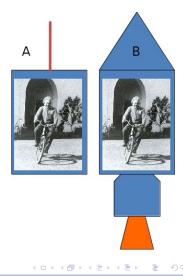
- the attraction of the earth's field and
- an accelerated spaceship.

Basic principles 0000000 Accelerated frames Underlying maths

GR description of gravity 0000

Einstein's thoughts

There is no way to tell the difference between


- A freely falling elevator and
- zero gravitational field in deep space,

or

- the attraction of the earth's field and
- an accelerated spaceship.

Reason: $\vec{F} = m\vec{a}$ and $\vec{F} = m\vec{g}$ contain the same

mass.

GR as a geometric theory

GR is geometry!

- *Gravity* is seen as a warping in space and time
- Caused by the mass and energy in the universe

Flat

a Soherical

Space

Hyperbolic

Space

Frank Ohme

Space

Zero

Curvature

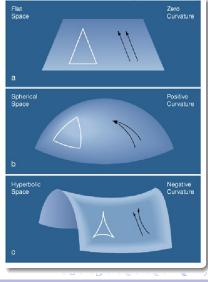
Positive

Curvature

Negative

Curvature

8/18


Basic principles OCOOOOO GR as a geometric theory Underlying maths

GR description of gravity 0000

GR is geometry!

- *Gravity* is seen as a warping in space and time
- Caused by the mass and energy in the universe

But how can we see curvature in a 4-dimensional spacetime without having more dimensions?

Underlying maths 00000 GR description of gravity 0000

Home exercise I

Clocks in GPS satellites

Assume time is measured by laser beams just as in the canonical example of Special Relativity. According to Einstein's Equivalence Principle, being in a gravitational field is no different from travelling in an accelerating rocket. Therefore, clocks are ticking at different rates depending on their location in the gravitational field.

Are the clocks in GPS satellites ticking faster or slower compared to the surface of the earth?

Underlying maths ••••• GR description of gravity 0000

Distance & metric

Mathematical interlude

Distance

• Consider two points separated by

$$d\vec{x} = (dx, dy, dz)$$

• Their distance in flat space reads

$$ds^2 = dx^2 + dy^2 + dz^2$$

Metric

• Slightly more generalized $(dx, dy, dz) = (dx^1, dx^2, dx^3)$ $ds^2 = g_{ab} dx^a dx^b$

(summed over indices a and b)

• *g_{ab}* is the metric of the space (in flat space: simply 3 × 3 identity matrix)

Underlying maths 00000 GR description of gravity 0000

Distance & metric

Generalize the concept

Flat spacetime

- Space and time $(dt = dx^0)$ unified $ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$ $= \eta_{ab} dx^a dx^b$
- η_{ab} is the Minkowski metric
 - $ds^2 > 0$ spacelike separation, no information can be passed between both points
 - $ds^2 = 0$ null separation, (only) light can travel from one point to the other
 - $ds^2 < 0$ timelike separation, particles can go from one point to the other

Underlying maths

GR description of gravity 0000

Distance & metric

Generalize the concept

General (curved) spacetime

• In general,

$$ds^2 = g_{ab} \, dx^a \, dx^b \; ,$$

where metric g_{ab} can differ from Minkowski, but has to be symmetric and obey a particular "signature"

- There is no unique or special coordinate system, and metric has different form in every system
- \Rightarrow Neither coordinates nor metric mean very much by themselves
 - Distance of (closely) neighbouring points are invariant

Exercise II

Home exercise II

Underlying maths

GR description of gravity 0000

Metric transformations

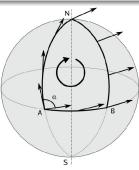
The flat space metric in Cartesian coordinates is the 3×3 identity matrix. How does the same metric look in cylindrical and spherical coordinates?

Can you think of a coordinate system in which the flat space metric is *not* diagonal?

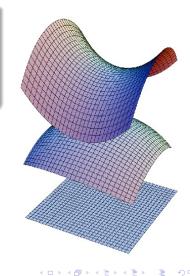
Curvature

Underlying maths

GR description of gravity 0000


Curvature

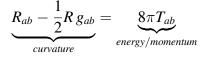
Riemann tensor


• (Intrinsic) curvature is defined by the Riemann tensor

$$(\nabla_c \nabla_d - \nabla_d \nabla_c) v^a = \mathbf{R}^a{}_{bcd} v^b$$

• ∇ is the covariant derivative

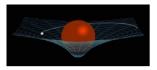
Frank Ohme



Underlying maths 00000 GR description of gravity ●○○○

Einstein's Equations

Condensed form


• Matter and energy warp spacetime

Geodesics

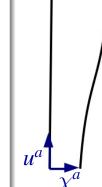
- Free particles move along *geodesics*, the equivalent of a straight line in curved spacetime
- Geodesics are the shortest paths between two points.

A D > <
 A P >
 A

Underlying maths

GR description of gravity ○●○○

Effect of curvature


Geodesic deviation

The effect of gravity

- Gravity can be detected by monitoring the distance between two freely falling particles (on geodesics)
- Geodesic deviation describes how separation evolves

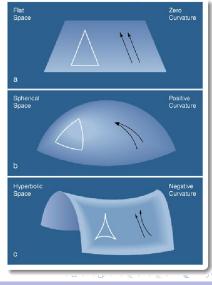
 $\nabla_u \nabla_u \chi^a = R^a{}_{bcd} \, u^b u^c \chi^d$

- \Rightarrow The "acceleration" of the separation is determined by curvature
- \Rightarrow Gravity acts as a tidal force

Underlying maths

GR description of gravity

Effect of curvature


Geodesic deviation

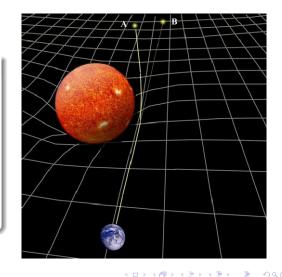
Examples

 \rightarrow Flat space, parallel lines stay parallel

 \rightarrow Positive curvature, initially parallel lines will intersect

 \rightarrow Negative curvature, initially parallel lines diverge

Underlying maths


GR description of gravity ○○○●

Physical effects

Observable Consequences

Examples

- Precession of Mercury
- Bending of the light by the sun
- "Inspiral" of binary pulsars

