Exercises	
0000	

Solving Einstein's Equations

Gravitational Waves

Generation of Gravitational Waves

GRAVITATIONAL WAVES

Project student lectures 2014

Stephen Fairhurst

Cardiff University

10/10/2013

Lectures available under https://gravity.astro.cf.ac.uk/dokuwiki/public/lectures

Exercises •••••	Solving Einstein's Equations	Gravitational Waves	Generation of Gravitational Waves
Ex. 1			
Exercise	Г		

Clocks in GPS satellites

Assume time is measured by laser beams just as in the canonical example of Special Relativity. According to Einstein's Equivalence Principle, being in a gravitational field is no different from travelling in an accelerating rocket. Therefore, clocks are ticking at different rates depending on their location in the gravitational field.

Are the clocks in GPS satellites ticking faster or slower compared to the surface of the earth?

Exercises	Solvii
Ex. 1	00

Exercise I

Gravitational Waves

Generation of Gravitational Waves

from "outside"

Simple (heuristic) explanation

 Just like in Special Relativity, fast moving (accelerating) rockets appear to have slower ticking clocks.

イロト 不得 とくほ とくほう

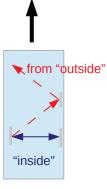
Exercises	
0000	
Ex 1	

Exercise I

Solving Einstein's Equations

Gravitational Waves

Generation of Gravitational Waves



Simple (heuristic) explanation

- Just like in Special Relativity, fast moving (accelerating) rockets appear to have slower ticking clocks.
- Clocks on earth and GPS satellites feel gravitational field of the earth ⇒ same effects as in accelerating rocket (Einstein's Equivalence Principle)

イロト イポト イヨト イヨト

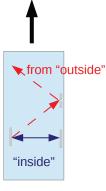
Exe	ercises	
00	00	
Ev	1	

Exercise I

Solving Einstein's Equations

Gravitational Waves

Generation of Gravitational Waves



Simple (heuristic) explanation

- Just like in Special Relativity, fast moving (accelerating) rockets appear to have slower ticking clocks.
- Clocks on earth and GPS satellites feel gravitational field of the earth ⇒ same effects as in accelerating rocket (Einstein's Equivalence Principle)
- Some acceleration is greater on the surface ⇒ earth-based clocks tick slower, or conversely, clocks in GPS satellites *tick faster*

イロト イポト イヨト イヨト

Exercises 0000	Solving Einstein's Equations 00	Gravitational Waves	Generation of Gravitational Waves
Ex. 2			
Exercise	e II		

The flat space metric in Cartesian coordinates is the 3×3 identity matrix. How does the same metric look in cylindrical and spherical coordinates?

Can you think of a coordinate system in which the flat space metric is *not* diagonal?

Exercises 0000	Solving Einstein's Equations	Gravitational Waves	Generation of Gravitational Waves
Ex. 2			
Exercise	II		

The flat space metric in Cartesian coordinates is the 3×3 identity matrix. How does the same metric look in cylindrical and spherical coordinates?

Can you think of a coordinate system in which the flat space metric is *not* diagonal?

Solution

$$ds^2 = g_{ab} dx^a dx^b = g_{ab} \frac{\partial x^a}{\partial x^{\mu}} \frac{\partial x^b}{\partial x^{\nu}} dx^{\mu} dx^{\nu}$$

Exercises 0000	Solving Einstein's Equations	Gravitational Waves	Generation of Gravitational Waves
Ex. 2			
Exercise	II		

The flat space metric in Cartesian coordinates is the 3×3 identity matrix. How does the same metric look in cylindrical and spherical coordinates?

Can you think of a coordinate system in which the flat space metric is *not* diagonal?

Solution

$$ds^{2} = g_{ab} dx^{a} dx^{b} = \underbrace{g_{ab} \frac{\partial x^{a}}{\partial x^{\mu}} \frac{\partial x^{b}}{\partial x^{\nu}}}_{=g_{\mu\nu}} dx^{\mu} dx^{\nu}$$

Exercises 0000	Solving Einstein's Equations	Gravitational Waves	Generation of Gravitational Waves
Ex. 2			
Exercise	II		

The flat space metric in Cartesian coordinates is the 3×3 identity matrix. How does the same metric look in cylindrical and spherical coordinates?

Can you think of a coordinate system in which the flat space metric is *not* diagonal?

Solution

$$ds^{2} = g_{ab} dx^{a} dx^{b} = \underbrace{g_{ab} \frac{\partial x^{a}}{\partial x^{\mu}} \frac{\partial x^{b}}{\partial x^{\nu}}}_{=g_{\mu\nu}} dx^{\mu} dx^{\nu}$$
Polar: $ds^{2} = dr^{2} + r^{2} d\varphi^{2} + dz^{2}$
Spherical: $ds^{2} = dr^{2} + r^{2} \sin^{2} \vartheta d\varphi^{2} + r^{2} d\vartheta^{2}$

Exercises	Solving Einstein's Equations	Gravitational Waves	Generation of Gravitational Waves
0000	00	00000	00000
Ex. 2			

Matrix form

CartesianPolarSpherical $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 \sin^2 \vartheta & 0 \\ 0 & 0 & r^2 \end{pmatrix}$

Exercises	Solving Einstein's Equations	Gravitational Waves	Generation of Gravitational Waves
0000	00	00000	00000
Ex. 2			

Matrix form

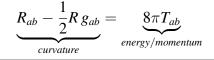
CartesianPolarSpherical $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 \sin^2 \vartheta & 0 \\ 0 & 0 & r^2 \end{pmatrix}$

Example of non-diagonal metric: $x = \xi + \eta$, $y = \eta + \kappa$, $z = \kappa$ $\Rightarrow \quad \boldsymbol{g} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$

Exercises 0000	Solving Einstein's Equations ●○	Gravitational Waves	Generation of Gravitational Waves
General			
Recap			

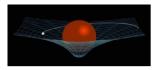
Einstein's Equations

• Matter and energy warp spacetime



Geodesics

- Free particles move along *geodesics*, the equivalent of a straight line in curved spacetime
- Geodesics are the shortest paths between two points.



Exercises 0000 Solutions Solving Einstein's Equations

Gravitational Waves

Generation of Gravitational Waves

Solutions to Einstein's Equations

Solving the equations is hard ...

- Set of 10 coupled non-linear, second-order, partial differential equations for the metric *g*_{*ab*}
- Coordinates (gauge) is not specified
- Some exact solutions are known, but mostly for "simple" cases (time-independent, symmetric)
 - Minkowski metric: flat spacetime
 - Schwarzschild: unique spherical symmetric vacuum solution outside of a massive body (non-rotating black hole)
 - Kerr solution for a rotating black hole
 - Friedmann-Robertson-Walker cosmological solution

イロト イポト イヨト イヨト

Exercises
Procedure

Solving Einstein's Equations

Gravitational Waves ●○○○○ Generation of Gravitational Waves

Weak field limit

Assumptions

- Consider a weak gravitational field
- There exist global coordinates such that the metric is "almost" flat, i.e.

$$g_{ab} = \eta_{ab} + h_{ab}$$
, with $|h_{ab}| \ll 1$

Exercises
0000
Procedure

Solving Einstein's Equations

Gravitational Waves

Generation of Gravitational Waves

Weak field limit

Assumptions

- Consider a weak gravitational field
- There exist global coordinates such that the metric is "almost" flat, i.e.

$$g_{ab} = \eta_{ab} + h_{ab}$$
, with $|h_{ab}| \ll 1$

Strategy

- Use this ansatz and calculate the curvature
- Keep terms up to $\mathcal{O}(h_{ab})$
- Coordinates are not arbitrary any more (we need $|h_{ab}| \ll 1$), but there is still some freedom
- \Rightarrow Use transverse-traceless Lorentz gauge to simplify equations

Exercises 0000	Solving Einstein's Equations	Gravitational Waves	Generation of Gravitational Waves
Solution			

Einstein's Equations

$$R_{ab} - \frac{1}{2}R g_{ab} = 8\pi T_{ab}$$
$$\Rightarrow \ \partial^c \partial_c h_{ab} = \left(-\frac{\partial^2}{\partial t^2} + \nabla^2\right) h_{ab} = -16\pi T_{ab}$$

Solution of the wave equation

• In vacuum, where $T_{ab} = 0$, we find the plane wave solution

$$h_{ab} = A_{ab} \, e^{i \, k_c x^c}$$

with the following properties

- $\eta_{ab}k^ak^b = 0$: wave travels at the speed of light
- $A_{ab}k^a = 0$: wave is transverse
- $\eta_{ab}A^{ab} = 0$: solution is trace-free
- $A_{0i} = 0$ for i = 1, 2, 3

Exercises
0000
Properties

Solving Einstein's Equations

Gravitational Waves

Generation of Gravitational Waves

Wave equation

Explicit form

• Consider a wave travelling in *z*-direction

$$\Rightarrow k_a = (-\omega, 0, 0, \omega)$$

• Only 2 independent functions remain

$$h_{ab}=\left(egin{array}{cccc} 0&0&0&0\ 0&h_+&h_ imes&0\ 0&h_ imes&-h_+&0\ 0&0&0&0\end{array}
ight)$$

$$ds^{2} = -dt^{2} + (1 + h_{+}) dx^{2} + (1 - h_{+}) dy^{2} + 2h_{\times} dx dy + dz^{2}$$

Exercises 0000	Solving Einstein's Equations	Gravitational Waves	Generation of Gravitational Waves
Effects			
Effect of a	a GW		

The metric changes slightly, so what?

◆□▶ ◆□▶ ◆□▶ ◆□▶

Exercises	
0000	
Effects	

Solving Einstein's Equations

Gravitational Waves

Generation of Gravitational Waves

Effect of a GW

The metric changes slightly, so what?

Geodesic deviation

• Separation of free falling particles

$$\nabla_{u} \nabla_{u} \chi^{a} = R^{a}_{bcd} u^{b} u^{c} \chi^{d}$$
$$\Rightarrow \frac{\partial^{2}}{\partial t^{2}} \chi^{a} = R^{a}_{00d} \chi^{d} = \frac{1}{2} \frac{\partial^{2} h_{ad}}{\partial t^{2}} \chi^{d}$$

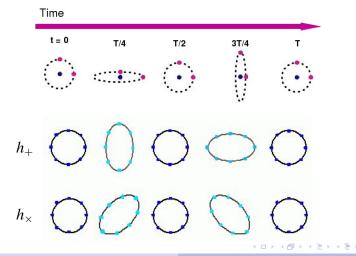
• Proper distance between particles changes

 u^a

Exercises 0000	Solving Einstein's Equations	Gravitational Waves ○○○○●	Generation of Gravitational Waves
Effects			

Visualization

Consider a GW travelling into the screen.



Exercises 0000 Solving Einstein's Equations

Gravitational Waves

Generation of Gravitational Waves ●○○○○

General solution

Generation of Gravitational Waves

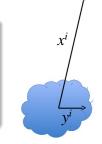
General solution

$$\partial^c \partial_c h_{ab} = -16\pi T_{ab}$$

 $\Rightarrow h_{ab}(t, x^i) = 4 \int \frac{T_{ab}(t - |x^i - y^i|, y^i)}{|x^i - y^i|} d^3y$

Strategy

- Assume far field, $||x^i|| \gg ||y^i||$
- Expand in leading order terms
- Use transverse, trace-free gauge and conservation law $\partial_a T^{ab} = 0$.



< E.

Exercises 0000 Solving Einstein's Equations

Gravitational Waves

Generation of Gravitational Waves 00000

General solution

The quadrupole formula

After a good bit of calculation ...

$$h_{ij}(t,x) = \frac{2}{r} \frac{\partial^2}{\partial t^2} \underbrace{\int y^i y^j T^{00}(t-r,y^i) d^3 y}_{\text{here}}$$

mass quadrupole moment in TT gauge

 $(r = \|x^i\|)$

◆□▶ ◆□▶ ◆□▶ ◆□▶

Exercises 0000 Solving Einstein's Equations

Gravitational Waves

Generation of Gravitational Waves 00000

General solution

The quadrupole formula

After a good bit of calculation ...

$$h_{ij}(t,x) = \frac{2}{r} \frac{\partial^2}{\partial t^2} \underbrace{\int y^i y^j T^{00}(t-r,y^i) d^3 y}_{\text{mass quadrupole moment in TT gauge}}$$

mass quadrupole moment in TT gauge

 $(r = \left\| x^i \right\|)$

Interpretation

- The gravitational wave is caused by an accelerating mass quadrupole moment
- There is no monopole or dipole radiation. (Follows from the conservation of energy and momentum.)

イロト イポト イラト イラト

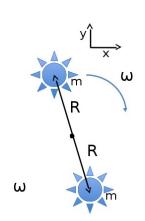
Exercises	Solving Einstein's Equations	C
0000	00	C
Binary system		
_		

Example

Binary on circular orbit

$$h_{ij} = \frac{2}{r} \frac{\partial^2}{\partial t^2} \left(2m \, y^i y^j \right)$$

Generation of Gravitational Waves $\circ \circ \bullet \circ \circ$



・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Exercises	Solving Einstein's Equations
0000	00
Binary system	

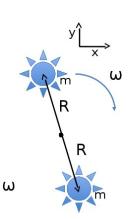
Example

Binary on circular orbit

$$h_{ij} = \frac{2}{r} \frac{\partial^2}{\partial t^2} \left(2m y^i y^j \right)$$

$$\Rightarrow h_+ = -\frac{8m\omega^2 R^2}{r} \cos(2\omega t)$$

$$h_\times = -\frac{8m\omega^2 R^2}{r} \sin(2\omega t)$$



< ∃→

ł

Generation of Gravitational Waves

00000

イロト イポト イヨト

Gravitational Waves

Exercises	Solving Einstein's Ec
Binary system	00

Example

Gravitational Waves

Generation of Gravitational Waves 00000

Binary on circular orbit

$$h_{ij} = \frac{2}{r} \frac{\partial^2}{\partial t^2} \left(2m y^i y^j \right)$$

$$\Rightarrow h_+ = -\frac{8m\omega^2 R^2}{r} \cos(2\omega t)$$

$$h_\times = -\frac{8m\omega^2 R^2}{r} \sin(2\omega t)$$

Home assignment

What is the GW strain on earth produced by a neutron-star binary that is 100 Mpc away and separated by 50km?

ω ω

A D > <
 A P >
 A

- E - N

- ₹ ₹ >

Exercises 0000	Solving Einstein's Equations 00	Gravitational Waves 00000	Generation of Gravitational Waves

Energy

Few words about the energy carried by GW

- Local energy cannot be defined strictly in GR
- In linearised gravity, use flat background metric spacetime to obtain energy in GW as

$$T_{ab}^{(\mathrm{GW})} = rac{1}{32\pi} \left(\partial_a h_{cd}
ight) \left(\partial_b h^{cd}
ight)$$

• Combined with quadrupole formula and integrated over the sphere yields the total luminosity of the source

$$\mathcal{L} = rac{1}{5} rac{\partial^3 Q^{ij}}{\partial t^3} rac{\partial^3 Q_{ij}}{\partial t^3}$$

where Q_{ij} is the mass quadrupole moment.

Exercises 0000	Solving Einstein's Equations	Gravitational Waves	Generation of Gravitational Waves ○○○○●		
Home Assignment					
Exercise IV					

Chirp Signal

An equal-mass binary on circular orbits with velocities v and masses m is characterized by the energy

$$E(t) = -m v(t)^2$$

and the gravitational-wave flux

$$\mathcal{L}(t) = rac{2048}{5} v(t)^{10}$$
 .

Determine from the energy-balance law

$$\frac{dE(t)}{dt} = -\mathcal{L}(t)$$

the evolution of *v*. How does the GW signal (h_+) look like? (Hint: Keplerian motion: $m\omega = 4v^3$.)