Gravitational Wave Detectors

Thomas Adams Postgrad Lectures 2013

Outline

- Interferometer basics
 - Recap of GW basics
 - Detecting gravitational waves
 - Interferometers
 - GW detectors
- Noise sources
 - Seismic noise
 - Optimal readout noise
 - Thermal noise
- Transient noise

Who am I?

- Thomas Adams
- 4th year PhD student working with Patrick

 Searches for gravitational wave bursts
 Characterisation of the GEO 600 detector
- Spent half my PhD on site at the British -German GEO 600 detector near Hannover

Recap of gravitational waves

• Distance between two points:

$$ds^2 = \left(dx_1^2 + dx_2^2 + dx_3^2\right)$$

• Can rewrite this in General Relativity as

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$$

- Where g is the metric (identity for flat space) and dx is the displacement vector
- Includes new term for displacement in time

Recap of gravitational waves

Gravitational waves are perturbation of the space-time metric

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

 In the simplest form, waves travelling in zdirection take this form:

$$h_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Detecting gravitational waves

- Rotation gives simple form in lab frame ^z
- $h_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{xx} & h_{xy} & h_{xz} \\ 0 & h_{yx} & h_{yy} & h_{yz} \\ 0 & h_{zx} & h_{zy} & h_{zz} \end{pmatrix}$ • Consider light beam travelling in x-direction (down the lab) between two test masses, and GW travelling in z-direction (vertically down). Distance between them changes:

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = (\eta^{\mu\nu} + h_{\mu\nu}) dx^{\mu}dx^{\nu}$$
$$= -c^{2}dt^{2} + dx^{2} \left(1 + h_{xx}^{TT}\right)$$

Detecting gravitational waves

- Consider the following experiment
 - Shine a laser down the lab (in the x-direction)
 Time how long it takes to hit the test mass
- For a laser beam:

$$ds^2 = 0$$

- so the distance to the end of the lab changes $L_x = \int_0^L c \, dt = \int_0^L \sqrt{1 + h_{xx}} \simeq \left(1 + \frac{1}{2}h_{xx}\right) L$
- We can measure the light travel time change to detect and study gravitational waves directly

Detecting gravitational waves

 If we do this in both the x- and y-directions we can measure gravitational wave strain

$$h(t) = \frac{\Delta L}{L} = \frac{L_x - L_y}{L} = \frac{1}{2} (h_{xx} - h_{yy})$$

 Conveniently, such experiments have been around for more than a hundred years

Interferometers

Interferometers

- Michelson-Morley designed this experiment to detect the Æther in 1887
- Proved themselves wrong!

Interferometers

- Shine laser light onto partially reflecting mirror – "beam splitter"
- Send down two arms and back mirror Recombine at beam splitter and exit at coherent light output photo detector source semi-silvered mirror
- Measure interference pattern to accuracy of $\lambda/20$

r

- ETM Added mirrors turn arms into Fabry-Perot cavities. Test Masses fused silica, 4 km 34 cm diam x 20 cm thick 40 ka Input Mode Effective increase in arm length of 30x-50x. ITM ETM 815 kW Added power recycling mirror to T=1 4% return reflected light back into interferometer. Effective increase in GW readour power by 20x. Output Mode
- Added signal recycling mirror to return output light (signal) into interferometer. Effective increase in signal time in interferometer.

- Have global network of large scale detectors
- Laser Interferometer Gravitational-Wave Observatory (LIGO):
 - Two detectors at Hanford, WA
 - 'H1' 4 kilometer Fabry-Perot arm cavities
 - 'H2' 2 km FP cavities
 - One detector at Livingston, LA
 - 'L1' 4 km FP cavities
- Virgo at Pisa, Italy, with 3 km FP cavities
- GEO600 at Hannover, Germany with 600m folded arms
 - No FP cavities, arms fold back on themselves

- Optimum sensitivity is achieved when light takes ½ period of GW to traverse the arm
- For a GW at 200Hz, this corresponds to arm length of 500km...

 Fabry-Perot cavities store light in arms for ~50 round trips, LIGO with FP has effective arm length 200km.

- Consider a GW travelling in z-direction (i.e. landing on top of detector).
- We have h_{xx} = -h_{yy} = h, and recall for a single trip down the x-arm

$$c\Delta t = \left(1 + \frac{1}{2}h_{xx}\right)L$$

 So, for round trip, time delay between signals in two arms is:

$$\Delta t = \frac{2}{c} \left(\left(1 + \frac{1}{2} h_{xx} \right) L - \left(1 - \frac{1}{2} h_{yy} \right) L \right)$$

- Solving that gives a time-delay $\Delta t = \frac{2h(t)L}{c}$ or a phase shift of $\Delta \phi = \frac{4\pi h(t)L}{\lambda}$
- If we plug in realistic numbers, $\lambda = 1064$ nm, L = 4km, h = 10⁻²¹ we get:

 $\Delta L = 2 \times 10^{-18}$ m, $\Delta \varphi = 2 \times 10^{-9}$

- Patrick Sutton's reality check:
 - Sensitivity $\Delta L = 2 \times 10^{-18} \text{m}$ $\Delta \varphi = 2 \times 10^{-9}$
- These are:
 - 10¹⁰ times smaller than 1 MM fringe
 - -10^{12} times smaller than laser wavelength
 - 10⁹ times smaller than atoms in mirrors whose position we try to measure
 - 10¹² times smaller than seismic motion shaking mirrors

Seismic noise

 Shaking of ground due to earthquakes, weather, human activity

Frequency (Hz)	Distance (km)	Source
0.01 - 1	10^{3}	Distant earthquakes
		Microseism
1 - 3	10^{1}	Far anthropogenic noise
		Close earthquakes
		Wind
3 - 10	10^{0}	Anthropogenic noise
		Wind
10 - 30	10^{-1}	Close anthropogenic noise

Table 1. Description of the main seismic frequency bands and their sources

Seismic noise

At 10 Hz, seismic motion is several orders of magnitude above GW spectrum

Passive seismic isolation

- Need to supress motion by factor of 10⁸
- Mirrors suspended as quadruple pendula
- 40 kg silica test masses
- Lab floor on separate slab

Active seismic isolation

- Use sensors to detect ground motion and correct accordingly
- Hydraulic actuators reduce factor of 10 at low frequency (<2 Hz)
- EM actuators give factor of 30 at 10Hz

www.ligo.caltech.edu/docs/G/G040046-00.pd

Thermal noise

- All detector parts are subject to thermal noise:
 - Brownian motion (random motion of atoms in the mirrors)
 - Vibrational modes (resonances) of the suspension wires
 - Dissipation from friction in the wires
- Recall equipartition theorem: each degree of freedom contributes energy of ½k_BT. For 40 kg mass suspended from 1m wire:

$$\Delta L_{\rm rms} = \sqrt{\frac{k_B T l}{mg}} \simeq 3 \times 10^{-12} \,\mathrm{m}$$

• 10⁷ times larger than motion due to GW

Thermal noise

- Further thermal noise due to heat transfer from laser to mirrors
- Mitigate thermal noise with:
 - Fused silica wires less friction, less noise
 - Better connection to mirror
 - Better coatings for mirrors
 - Heavier mirrors
 - Thermal compensation

Quantum noise – shot noise

- Quantum noise is introduced by the fluctuating number of photons arriving at the output port
- The uncertainty in the phase of a laser beam due to quantization of light into photons is called shot noise.
- Dominant noise source at high frequency
- If error in photon number if σ_N , and error in phase is σ_{ϕ} HUP:

$$\sigma_N \sigma_\phi = 1$$

Quantum noise – shot noise

- Number of photons per second: $N_{\gamma} = \frac{P}{E} = \frac{P \lambda}{hc} = 50 \frac{200 \text{W} \, 1064 \text{nm}}{hc} \simeq 6 \times 10^{22} \, \text{s}^{-1}$
- So error (assuming Poisson statistics):

$$\sigma_N = \sqrt{N} = 2.5 \times 10^{11}$$

- And so the phase error is: $\sigma_{\phi} = \frac{1}{\sigma_N} = 4 \times 10^{-12} \text{rad}$
- This is equivalent to an arm length change of: $\Delta L = \frac{1064 \text{ nm}}{2\pi} 4 \times 10^{-12} = 6 \times 10^{-19} \text{ m}$

Quantum noise – radiation pressure

- Quanta in laser beam carry energy and momentum, which pass to mirrors upon transmission/reflection
- Higher power laser gives better sensitivity in areas (less shot noise), but higher radiation pressure noise
- Limiting noise source in 10-50 Hz band.

Transient noise

- Limiting sources are stationary (time and freq)
 form baseline for sensitivity
- Many searches for short-duration GW events
- Also short-duration noise events that mask/ mimic GWs

Summary

- Differential arm motion can detect GW!
- Large-scale interferometers have been built for this purpose
 - Can detect differential motion to 10⁻¹⁸ m!
- Subject to noise sources
 - Seismic noise due to ground motion (low frequency)
 - Thermal noise in suspension and mirrors (mid frequency)
 - Radiation pressure noise (mid) and shot noise (high) due to laser
- Subject to transient events that can mimic GW