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Goal and Lecture Outline

Goal: Get a basic understanding of the main noise sources in
an interferometer like LIGO, and how we can hope to detect
GWs.

Outline of Lecture: We’ll cover

Basics of interferometric GW detectors.
Recap of GWs.
h(t) and phase shift in a basic interferometer

Main noise sources, their size, how they’re controlled.
Thermal noise
Optical readout noise: shot noise, radiation pressure noise,
& the standard quantum limit
Seismic noise
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Gravitational-Wave Detection for
Theorists
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Wave Equation for Linearized Gravity

A concrete treatment of GWs is based on linearized
perturbations around a fixed background metric in general
relativity.
The perturbation obeys a wave equation. In flat space:

2

Concrete treatment of GWs based on linearized perturbations around a fixed 
background metric in general relativity.  Perturbation obeys a wave equation.  
E.g., in flat space:

Solution:  waves with 2 transverse                                                  polarizations 
rotated by 45º 
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Solution: Transverse
waves with 2
polarizations rotated
by 45◦.
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Example

General solution for a GW propagating in the z direction in
empty space (Tab = 0):

hab(t , z) =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 h+(ct − z)

︸ ︷︷ ︸
“plus′′

polarization

+


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 h×(ct − z)

︸ ︷︷ ︸
“cross′′

polarization

.

h+ and h× are arbitrary functions.
No component in the t direction or the direction of
propagation (z direction) — GWs are transverse.
GWs propagate at the speed of light.
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Interpretation: The Effect of GWs

Gravitational waves are deformations of space itself, stretching
it first in one direction, then in the perpendicular direction.

6

Gravitational Wave Basics

      A consequence of Einstein’s general theory of relativity

      Emitted by a massive object, or group of objects,

      whose shape or orientation changes rapidly with time

Waves travel away from the source at the speed of light 

Waves deform space itself, stretching it first in one direction, then

in the perpendicular direction

Time

“Plus”

polarization

“Cross”

polarization
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Interferometric GW Detectors (simplest case)

Fig. 2. A schematic diagram of an apparatus that can detect gravitational waves. It has

the form of a Michelson interferometer.

Take advantage of the tidal
nature of GWs.
The simplest design is just
a Michelson
interferometer. A laser is
used to measure the
relative lengths of two
orthogonal paths (“arms”).
As a GW passes, it
changes the path length
along the two arms,
changing the interference
pattern at the output
photodetector.
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Interferometric GW Detectors (more sophisticated)

Add partially
reflecting mirrors
– turns arms into
Fabry-Perot
cavities,
effectively
increasing length
by ×30–50.

Add power recycling mirror – returns spent light to
interferometer. Effectively increases laser power by ×20.
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Current Ground-based detectors

A number second-generation “advanced” detectors are
under construction:

Two LIGO detectors in the US (one in Hanford, WA with
4 km arms, and one in Livingston, LA, with 4 km arms).
The Virgo detector in Pisa, Italy (with 3 km arms).
The KAGRA detector in Kamioka, Japan (with 3 km arms).

The first-generation GEO-600 detector in Hannover,
Germany (with 600 m arms) is also currently operating.
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LIGO Hanford Observatory

16

LIGO Hanford Observatory
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Detecting GWs with a laser interferometer

For two free particles initially at rest on the x-axis
separated by the coordinate distance L∗, the proper
distance between the particles changes under the passage
of a plane gravitational wave propagating in the z-direction
according to:

L(t) =

∫ L∗

0

√
ds2 =

∫ L∗

0
dx
√

1 + h+(t) ≈
(

1 +
1
2

h+(t)
)

L∗ .

(1)

The fractional displacement is thus

∆L(t)
L∗

:=
L(t)− L∗

L∗
=

1
2

h+(t) (2)
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Detecting GWs with a laser interferometer

Consider a +-polarized plane wave incident on a laser
interferometer directly from above, with x- and y -axes
directed along the interferometer’s arms. Then for laser
light traveling in the x-direction:

0 = ds2 = −dt2 + [1 + h+(t)] dx2 (3)

The light travel time down the x-arm is thus

Tout,x = Lx∗ +
1
2

∫ Lx∗

0
h+(t) dx (4)

where Lx∗ is the unperturbed length of the arm, and where
we have ignored second-order terms in h+.
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Round trip

Provided the period of the GW is much greater than the
light travel time, then h is approximately constant over the
round-trip. Then

Tout,x = Lx∗ +
1
2

h+(t) Lx∗ (5)

The total round-trip time is

Ttot,x = 2Lx∗ + h+(t) Lx∗ (6)

Similarly, for the y -arm:

Ttot,y = 2Ly∗ − h+(t) Ly∗ (7)

Thus,
∆T ≡ Ttot,x − Ttot,y = 2L∗ h+(t) , (8)

where in the last equality we assumed that Lx∗ = Ly∗ =: L∗.
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Phase shift

The phase shift in the recombined laser light is

∆φ := 2πflaser∆T =
4π L∗ h+(t)

λlaser
. (9)

Substituting λlaser = 10−6m, L∗ = 4 km, and h+(t) ∼ 10−21

(which is the strength of GWs that LIGO hopes to detect),
we get

∆L(t) = 2× 10−18m , (10)

∆φ ∼ 3× 10−9 . (11)

where ∆φ includes a factor of 50 for the effective increase
in arm length due to the use of Fabry-Perot cavities.
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Reality check

Exercise: Show that it is impossible for LIGO to detect GWs.

Answer: Maximum expected GW amplitude is about h < 10−21,
so the change in arm lengths is ∼ 10−18m and the phase shift
is ∆φ ∼ 10−9. These are:

1010 times smaller than the phase shift needed to move
one fringe in a Michelson-type experiment.
1012 times smaller than the laser wavelength, ∼ 1µm (the
size of our “ruler”).
109 times smaller than the size of the atoms in the mirror
whose position we are trying to measure (and which are
oscillating due to thermal noise).
1012 times smaller than the typical motion of the ground
due to seismic noise (speeds ∼ 1µm/s).
Next: Consider each of these in turn, and see how they’re
handled.
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Noise Sources & Mitigation

This material is taken from the book Fundamentals of Interferometric
Gravitational-Wave Detectors, by Peter Saulson.
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LIGO-Hanford Detector Noise Spectrum, 2007
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Thermal Noise

Equipartition Theorem: each degree of freedom of a
system in thermodynamic equilibrium at temperature T
should have an energy whose expectation value is 1

2kBT .

Main physical manifestations of thermal noise:
Random motion of atoms in mirrors.
Vibration in wire suspensions of mirrors (“violin modes”).
Swinging of the mirror pendula.

Induces random “jittering” of positions of mirrors.
E.g., m = 10kg mirror suspended from a ` = 1m wire:

∆Lrms '

√
kBT `
mg

' 6× 10−12m .

About 107 times larger than our GW!
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Fluctuation-Dissipation Theorem

Applies to any linear system in thermodynamic equilibrium.
For a system with impedance Z ≡ Fext/v the power
spectrum of the system’s random fluctuating motion is

Stherm(f ) =
kBT
π2f 2 Re(Z−1(f )) .

E.g., for harmonic oscillator with mass m, spring constant
k , and dissipative force −bv :

Stherm(f ) =
kBT
π2

b
b2f 2 + (2πm)2[f 2 − f 2

0 ]2
.

Here f0 =
√

k/m/2π is the resonant frequency.

Can show total noise power (or RMS displacement) does
not depend on the magnitude b of the dissipation, but the
shape of the power spectrum does depend on b.
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Fluctuation-Dissipation Theorem
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Fluctuation-Dissipation Theorem

Can minimize impact by making dissipation (b) small.
Concentrates noise power at resonant frequency f0.

Suspend mirrors as pendulums (low b, resonant frequency
∼ 1Hz – well below observation band).
Use high-quality-factor wires for suspensions, so vibrational
motion of “violin modes” is concentrated in narrow
frequency range.
Minimize the thermal noise from internal vibrations of the
mirrors by making them from material with very low
dissipation at acoustic frequencies at room temperature
(fused silica).
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Optical Readout Noise, pt. 1: Shot Noise

Want to measure changes in phase at the level
∆φ ∼ 10−11. What is the limit?

Measure phase from power received at photodiode. Light
comes in discrete packets (photons) with random arrival
times. Quantum fluctuations in number of photons arriving
in some time interval limit how accurately we can measure
power or phase.

Rate of photons at photodiode:

〈n〉 =
λ

2π~c
Pout .

Output power :

Pout = Pin cos2([Lx − Ly ]2π/λ) .
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Optical Readout Noise, pt. 1: Shot Noise

For operating on “half fringe” Pout = 1
2Pin, power/photon

fluctuations in time τ equivalent to length changes via

∆L
L

=
∆Pout

L
dL

dPout
=

λ

4πL
∆n
〈n〉

=
1
L

√
λ~c

4πPinτ
.

where we use ∆n ' 〈n〉1/2 for a Poisson process.

Corresponding spectral density of this photon shot noise is
white (independent of frequency) with magnitude

Sshot =
1
L2

λ~c
2πPin

.

Want highest laser power Pin possible to reduce shot noise.
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Optical Readout Noise, pt. 2: Radiation Pressure

Can’t increase laser power indefinitely without
repercussions.

Photons bouncing off mirrors impart momentum, moving
the mirrors stochastically.
More power −→ more photons −→ more radiation pressure
noise.

Force on mirror due to reflection of EM wave of power P is

F = P/c .

Spectrum of radiation pressure force:

F (f ) =

√
2π~Pin

cλ
.
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Optical Readout Noise, pt. 2: Radiation Pressure

Corresponding motion of each mirror (from F = ma):

x(f ) =
F (f )

m(2πf )2 .

The power spectrum of the fractional relative length
change from the sum of the 2 arms is then

Srad(f ) =

(
2x(f )

L

)2

=
1

m2L2f 4
~Pin

2π3cλ
.

Want lowest laser power Pin possible to reduce radiation
pressure noise.
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Optical Readout Noise, pt. 3: Standard Quantum Limit

Shot noise decreases with laser power, while radiation
pressure increases with laser power.
At any given frequency f the sum Sshot + Srad is minimized
by choosing the power Pin to make Sshot = Srad. The total
noise is then

SSQL =
1

(πfL)2
~
m
.

This minimum noise level is called the standard quantum
limit.

Though derived using details of the readout scheme, it is a
direct result of the Heisenberg uncertainty principle.
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Optical Readout Noise, pt. 3: Standard Quantum Limit

E.g.: For LIGO Pin ∼ 10W, λ = 1µm, m ∼ 10kg, so at
f = 100Hz we could get noise as low as

SSQL ∼ 6× 10−48/Hz .

The corresponding RMS length fluctuations are
approximately

∆LRMS ' L
√

f SSQL ∼ 10−19m .

This is indeed lower than our target of 10−18m – though not
by much!

Advanced detectors will need to use tricks such as
“squeezed light” to beat the SQL by shifting quantum
uncertainty into degrees of freedom not being measured
(not related to the relative length of the arms).
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Seismic Noise

Seismic noise (shaking of the ground, due to earthquakes,
weather, human activity, etc.) is not a fundamental noise
source like thermal noise or quantum uncertainty, but it
pretty important for detectors on the Earth.

Typical level: for mirrors separated by a large distance L
the relative distance fluctuations ∆L/L have power
spectrum

Sseismic '
10−18m2 Hz−1

L2

(
10Hz

f

)4

, f > 10 Hz

' 10−29 Hz−1
(

100Hz
f

)4

, (L = 4km)

This is about 1018 times the SQL we’re trying to reach!
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Seismic Isolation

Need to suppress length fluctuations by about 1010 in
amplitude (1020 in power).

Recall: Mirrors are suspended as pendula (simple
harmonic oscillators). Coupling between mirror position xm
and ground position xg is

mx ′′m = −k(xm − xg) .

In frequency domain:

xm

xg
=

f 2
0

f 2
0 − f 2

∝ f−2 f � f0

Mirror is passively isolated from ground motion at high
frequencies (f � f0 ∼ 1Hz).
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Seismic Isolation

Increase isolation from ground by “stacking”:
Suspend mirror pendulum from another pendulum.
Suspend mirror pendulum from another SHO like a spring,
itself suspended from another spring, etc.
For N layers of the stack, xm/xg → (f0/f )2N .

LIGO also uses active isolation: sensors monitor motion of
suspension system; control motors that push back on
system to cancel ground motion.

Can get required 1010 amplitude factor, though not easy.
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