Searching for Periodic Gravitational Waves from Spinning Neutron Stars

Reinhard Prix

Albert-Einstein-Institut Hannover

Caerdydd/Cardiff 22 Feb 2013

LIGO-G1300107-v2

Outline

- 2 CW Search Methods
 - Generalities
 - Standard CW Bayes factor
 - New "Line-robust" statistic
- Ourrent status and future outlook
 - Astrophysical priors
 - Current Sensitivities
 - Future Sensitivities

Continuous GWs from Spinning Neutron Stars

Rotating neutron star:

- non-axisymmetric $\epsilon = \frac{I_{xx} I_{yy}}{I_{zz}}$
- rotation rate u
- GW with frequency $f = 2\nu$ Strain-amplitude h_0 on earth: $h_0 = \left(\frac{16\pi^2 G}{c^4}\right) \frac{\epsilon I_{ZZ} \nu^2}{c^4}$

$$= 4 \times 10^{-25} \left(\frac{\epsilon}{10^{-6}}\right) \left(\frac{I_{zz}}{10^{45} \,\mathrm{g \, cm^2}}\right) \left(\frac{\nu}{100 \,\mathrm{Hz}}\right)^2 \left(\frac{100 \,\mathrm{pc}}{d}\right)$$

1st generation sensitivity (S5/S6): $\sqrt{S_n} \sim 2 \times 10^{-23} \,\text{Hz}^{-1/2}$ CW signals buried in the noise \implies need "matched filtering" $\text{SNR} \propto \frac{h_0}{\sqrt{S_n}} \sqrt{T}$ observation time $T \sim (\text{days} - \text{months})$

Different CW emission mechanisms

Continuous waves:

- CW lifetime $\gtrsim T_{\rm obs}$
- quasi-monochromatic sinusoid $f \sim \mathcal{O}(\nu)$

Emission mechanisms:

- "Mountains"
 (f = 2ν)
- Oscillations (r-modes: $f \sim 4\nu/3$)
- Free precession $(f \sim \nu, 2\nu)$
- Accretion (driver)

Statistics as applied Probability Theory

Probability Theory: an extension of the framework of deductive logic to work with *incomplete information* ("Inference") [Jaynes, Cox]

A ... logical proposition, e.g.

A = "There is a (detectable) GW signal in this data" $A(h_0, f)$ = "The GW signal has amplitude h_0 , frequency f"

P(A|I) ≡ 'plausibility' of A being true given I 'I' ... set of relevant 'knowledge' and model assumptions

P(A|I) quantifies an observer's state of knowledge about A
 not an intrinsic property of the observed system!
 (Jaynes "Mind projection fallacy")

Generalities Standard CW Bayes factor New "Line-robust" statistic

The Three Laws

(Cox 1946, 1961, Jaynes) Requiring 3 conditions for P(A|I): (i) $P \in \mathbb{R}$, (ii) consistency, (iii) agreement with "common sense" one can *derive* unique laws of probability (up to gauge):

- $P(A|I) \in [0, 1]$ $\begin{cases}
 P(A|I) = 1 \Leftrightarrow (A|I) \text{ certainly true} \\
 P(A|I) = 0 \Leftrightarrow (A|I) \text{ certainly false}
 \end{cases}$
- 2 P(A|I) + P(not A|I) = 1
- **3** P(A and B|I) = P(A|B, I) P(B|I)

 $P(A|B, I) = P(B|A, I) \frac{P(A|I)}{P(B|I)}$ ("Bayes' theorem") P(A or B|I) = P(A|I) + P(B|I) - P(A and B|I)

We observe data 'x', what can we learn from it?

Formulate "question" as a proposition A and compute $P(A|\mathbf{x}, I)$

Generalities Standard CW Bayes factor New "Line-robust" statistic

Hypothesis Testing

The usual GW hypotheses

$$\begin{split} \mathcal{H}_{G} &: \text{data is pure Gaussian noise:} \quad \mathbf{x}(t) = \mathbf{n}(t) \\ \mathcal{H}_{S} &: \text{data is signal + GN:} \quad \mathbf{x}(t) = \mathbf{n}(t) + \mathbf{h}(t; \mathcal{A}, \boldsymbol{\lambda}) \end{split}$$

Data from several detectors: $\mathbf{x} = \{x^1, x^2, ...\}$ Gaussian noise: $P(\mathbf{n}|\mathbf{S}_n) = \kappa e^{-\frac{1}{2}(\mathbf{n}|\mathbf{n})}$

Signal amplitude parameters $\mathcal{A} = \{h_0, \cos \iota, \psi, \phi_0\}$. CW Signal phase parameters $\lambda = \{\text{sky-position}, f, f, ...\}$

Siven **x**, how can we decide between \mathcal{H}_G and \mathcal{H}_S ?

Generalities Standard CW Bayes factor New "Line-robust" statistic

Bayes factor

Directly compute $P(\mathcal{H}_S|\mathbf{x}, I)$, or equivalently compute "odds":

$$O_{SG}(\mathbf{x}) \equiv \underbrace{\frac{P(\mathcal{H}_{S}|\mathbf{x}, I)}{P(\mathcal{H}_{G}|\mathbf{x}, I)}}_{\text{"Posterior odds"}} = \underbrace{\frac{P(\mathbf{x}|\mathcal{H}_{S}, I)}{P(\mathbf{x}|\mathcal{H}_{G}, I)}}_{\text{"Bayes factor"}} \times \underbrace{\frac{P(\mathcal{H}_{S}|I)}{P(\mathcal{H}_{G}|I)}}_{\text{"prior odds"}},$$

Assume given phase parameters λ , unknown \mathcal{A}

Bayes factor $B_{SG}(\mathbf{x})$ "updates" our knowledge about \mathcal{H}_S :

$$B_{\mathrm{SG}}(\mathbf{x}) = \int \mathcal{L}(\mathbf{x}; \mathcal{A}) P(\mathcal{A}|\mathcal{H}_{\mathrm{S}}, I) d^{4}\mathcal{A}$$

- \mathcal{A} -prior $P(\mathcal{A}|\mathcal{H}_{S}, I)$
- Likelihood ratio $\mathcal{L}(\mathbf{x}; \mathcal{A}) \propto \exp[-\frac{1}{2}\mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu} + \mathcal{A}^{\mu}\mathbf{x}_{\mu}]$

Generalities Standard CW Bayes factor New "Line-robust" statistic

What A-prior to use? Beating the F-statistic ...

- simple prior: $P(\mathcal{A}^{\mu}|\mathcal{H}_{S}) = \text{const}$ $\bowtie \ \mathcal{B}_{\mathcal{F}}(\mathbf{x}) = \int \mathcal{L}(\mathbf{x}; \mathcal{A}) d^{4}\mathcal{A}^{\mu} \propto e^{\mathcal{F}(\mathbf{x})}$
- *correct* prior $P(\mathcal{A}|\mathcal{H})$: isotropic NS axis $\mathcal{B}(\mathbf{x}) \equiv \int \mathcal{L}(\mathbf{x}; \mathcal{A}) dh_0 d\cos \iota d\psi d\phi_0$

- \mathcal{F} -statistic historically derived as max_{\mathcal{A}} $\mathcal{L}(\mathbf{x}; \mathcal{A}) \propto e^{\mathcal{F}(\mathbf{x})}$ [JKS(1998)]
- $\mathcal{B}(x)$ is more powerful than $\mathcal{F}(x)$ R Prix, B Krishnan, CQG 26 (2009)
- $\mathcal{B}(x)$ is Neyman-Pearson optimal A Searle, arXiv:0804.1161 (2008)

Introduction: What are CWs? Generalities CW Search Methods Standard CW Bayes factor Current status and future outlook New "Line-robust" statistic

Can we make \mathcal{F} more robust vs "line" artifacts?

Problem with $O_{\rm SG}(\mathbf{x}) = \frac{P(\mathcal{H}_{\rm S}|\mathbf{x})}{P(\mathcal{H}_{\rm G}|\mathbf{x})} \propto e^{\mathcal{F}(\mathbf{x})}$

Anything that resembles \mathcal{H}_{S} more than Gaussian noise \mathcal{H}_{G} can trigger large O_{SG} , regardless of its "goodness-of-fit" to \mathcal{H}_{S} ! e.g. quasi-monochromatic+stationary detector artifacts ("lines")

real an alternative hypothesis \mathcal{H}_L to capture "lines"

"Zeroth order line": single-detector signal trigger

 $\mathcal{H}_L = \textbf{`'x}$ looks like a signal in only one detector''

so
$$\mathcal{H}_L \equiv \left[\left(\mathcal{H}_S^1 \text{ and } \mathcal{H}_G^2 \right) \text{ or } \left(\mathcal{H}_G^1 \text{ and } \mathcal{H}_S^2 \right) \right]$$

Generalities Standard CW Bayes factor New "Line-robust" statistic

Extended CW statistics

Using 'simple' \mathcal{F} -stat priors: $P(\mathcal{H}_L | \mathbf{x}) \propto l_1 e^{\mathcal{F}_1(x_1)} + l_2 e^{\mathcal{F}_2(x_2)}$ with prior line odds $l_D \equiv \frac{P(\mathcal{H}_L^D | l)}{P(\mathcal{H}_G^D | l)}$ in detector D

Two ways to use \mathcal{H}_L :

1 line-veto statistic: $O_{SL}(\mathbf{x}) \equiv \frac{P(\mathcal{H}_{S}|\mathbf{x})}{P(\mathcal{H}_{L}|\mathbf{x})}$

e.g. for loud "candidates" with $\mathcal{F}(\mathbf{x}) > \mathcal{F}^*$

(a) "line-robust" detection statistic: $O_{SN}(\mathbf{x}) \equiv \frac{P(\mathcal{H}_S|\mathbf{x})}{P(\mathcal{H}_N|\mathbf{x})}$ with extended noise hypothesis: $\mathcal{H}_N \equiv (\mathcal{H}_G \text{ or } \mathcal{H}_L)$

(used in E@H S6Bucket, S6LV1)

[Prix, Keitel, Papa, Leaci, Siddiqi, in preparation]

Generalities Standard CW Bayes factor New "Line-robust" statistic

Line-veto "followup" O_{SL}

$$O_{\rm SL}(\mathbf{x}) \equiv \frac{P(\mathcal{H}_{\rm S}|\mathbf{x})}{P(\mathcal{H}_{\rm L}|\mathbf{x})} \propto \frac{e^{\mathcal{F}(\mathbf{x})}}{l_1 e^{\mathcal{F}_1(x_1)} + l_2 e^{\mathcal{F}_2(x_2)} }$$

Special case
$$l_1 = l_2$$
: $(\mathcal{F}_{\max} \equiv \max\{\mathcal{F}_1, \mathcal{F}_2\})$
In $O_{SL}(\mathbf{x}) = c_0 + [\mathcal{F}(\mathbf{x}) - \mathcal{F}_{\max}(x)] - \underbrace{\ln\left(1 + e^{(\mathcal{F}_{\min} - \mathcal{F}_{\max})}\right)}_{\in [0, \ln 2]}$

Recover ad-hoc veto criterion as special case

$$\ln O_{\rm SL}(\mathbf{x}) - c_0 \approx \mathcal{F}(\mathbf{x}) - \mathcal{F}_{\rm max}(x)$$

r veto if $\mathcal{F}_{\max}(x) > \mathcal{F}(\mathbf{x})$ ⇔ special choice of threshold!

Introduction: What are CWs? Generalities CW Search Methods Standard CW Bayes factor Current status and future outlook New "Line-robust" statistic

"Line-robust" detection statistic $O_{SN}(\mathbf{x})$

$$O_{\rm SN}(\mathbf{x}) \equiv \frac{P(\mathcal{H}_{\rm S}|\mathbf{x})}{P(\mathcal{H}_{\rm L}|\mathbf{x}) + P(\mathcal{H}_{\rm G}|\mathbf{x})} \propto \frac{e^{\mathcal{F}(\mathbf{x})}}{e^{\mathcal{F}^*} + l_1 e^{\mathcal{F}_1(x_1)} + l_2 e^{\mathcal{F}_2(x_2)}}$$

- \mathcal{F}^* is a prior constant (requires "tuning")
- estimate prior line-odds I_D from detector data!

Astrophysical priors Current Sensitivities Future Sensitivities

Neutron Star "Mountains": What do we know?

- Maximal possible deformations:
- Models predicting *actual* deformations:
 - large toroidal field $B_t \sim 10^{15}$ Gauss \perp to rotation: $\epsilon \sim 10^{-6}$ [C. Cutler]
 - accretion along *B*-lines \implies "bottled" mountains $\[\ensuremath{\mathbb{R}}\] \epsilon \sim 10^{-6} - 10^{-5}$ [Melatos, Payne]
- Minimal deformation from magnetic field:

IF $\epsilon \gtrsim 10^{-12} \left(\frac{B}{10^{12} \text{Gauss}}\right)^2$ [B. Haskell et al.(2008)]

$$\implies$$
 Prior range: $\epsilon \in [10^{-12}, 10^{-4}]$

Astrophysical priors Current Sensitivities Future Sensitivities

Spindown upper-limit for CWs from known pulsars

Rotational energy lost: $\dot{E}_{\rm rot} \propto I_{zz} \underline{\nu} \dot{\nu}$

Energy emitted in GWs: $\dot{E}_{GW} \propto \nu^6 l_{zz}^2 \epsilon^2$

Spindown upper limit: Spindown fully due to GW emission

Assumed I_{zz} (from EOS) and known distance *d*:

 \implies Upper limit on deformation ϵ :

 $\epsilon_{\rm sd} \propto \sqrt{\frac{1}{I_{zz}} \frac{|\dot{\nu}|}{\nu^5}}$

 \implies Upper limit on amplitude h_0 :

$$h_{
m sd} \propto rac{1}{d} \sqrt{I_{zz} \, rac{|\dot{
u}|}{
u}}$$

Astrophysical priors Current Sensitivities Future Sensitivities

Accretion

Breakup-limit $\nu_K \sim 1.5$ kHz region What limits the NS-spin? Bildsten, Wagoner: Accretion-torque = GW torque ($\propto \nu^5$)

$$h_0 \approx 5 \times 10^{-27} \left(\frac{300 \,\mathrm{Hz}}{\nu}\right)^{1/2} \left(\frac{F_x}{10^{-8} \,\mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}}\right)^{1/2}$$

☞ Sco X-1: $h_0(f = 2\nu) \sim 3 \times 10^{-26} \, (540 \, \text{Hz}/f)^{1/2}$

Astrophysical priors Current Sensitivities Future Sensitivities

Spindown Upper Limits: h₀

Astrophysical priors Current Sensitivities Future Sensitivities

Spindown and Indirect Upper Limits: ϵ

Astrophysical priors Current Sensitivities Future Sensitivities

Unknown gravitar population?

"Gravitars" \equiv {Population of unknown NSs, born spinning rapidly, spinning down purely due to GWs}

Blandford: If steady-state 2D uniform gravitar distribution in galactic disk, expected strongest signal is independent of $\{\epsilon_0, f\}$ $h_0 \sim 4 \times 10^{-24}$ (for birth-rate $\tau_B \sim 1/30$ y)

More detailed analysis by Knispel,Allen, PRD D78 (2008): distribution not 2D uniform, not steady-state: $rac{1}{160} h_0$ depends on f and (fixed) population ϵ_0

Astrophysical priors Current Sensitivities Future Sensitivities

Unknown gravitar population?

Astrophysical priors Current Sensitivities Future Sensitivities

Types of CW searches

- Targeting pulsars: sky-position and frequency f(t) known
 I template, computationally cheap ~ O (laptop)
 use optimal method (Bayes factor, "matched filtering")
- Directed: sky-position known, frequency f(t) unknown
- Wide-parameter: unknown sky-position and frequency f(t) SNR ∝ h₀/√T BUT computing cost C ∝ T^p, p ≥ 5
 r optimal method computationally impossible
 - Semi-coherent methods: break data into N_{seg} shorter segments of length T_{seg}, combine incoherently
 SNR ∝ h₀/√S_n N^{1/4}_{seg} √T_{seg}, BUT cheaper!
 NOTE: Optimal method *at fixed computing-cost* unknown
 - maximize available computing power by using Einstein@Home, clusters + GPUs

Astrophysical priors Current Sensitivities Future Sensitivities

Sensitivity estimate

"Sensitivity" \equiv {weakest detectable signal amplitude h_0 }

Depends on (i) detector noise $S_n(f)$, (ii) search parameters θ :

- false-alarm $p_{
 m FA}$ (small) and detection $p_{
 m det}(\sim 90\%)$
- total amount of data used T_{data}
- "size" of the parameter-space ℙ
- Computing-cost: C_0 = Computing-power \times runtime
- internal pipeline parameters: N_{seg} , T_{seg} , μ ,...

Define "characteristic sensitivity" $\sigma(\theta)$ of the method as

$$h_0(f) = rac{\sqrt{\mathcal{S}_{\mathrm{n}}(f)}}{\sigma(heta)}$$

Astrophysical priors Current Sensitivities Future Sensitivities

Examples of current Search Sensitivities

- Targeted searches (fully coherent): $h_0 = \frac{11.4}{\sqrt{T_{data}}} \sqrt{S_n}$ 2 years of data from 2 detectors: $T_{data} = 2 \times 2y \approx 10^8 \text{s}$ $\sigma \sim 1000 \text{ Hz}^{-1/2}$
- Directed semi-coherent (e.g. Galactic-center, Cas-A,...) $\sigma \sim 70 \,\mathrm{Hz}^{-1/2}$ ($N_{\mathrm{seg}} = 630, T_{\mathrm{seg}} = 2 \times 11.5 \mathrm{h}, \mu \sim 0.17$)
- All-sky searches for *isolated* NSs ($C_0(E@H) \sim 10^{21}$ flop) $\sigma \sim 30 \,\text{Hz}^{-1/2}$ ($N_{\text{seg}} = 121, T_{\text{seg}} = 2 \times 25$ h, $\mu \sim 0.6$) [K. Wette, PRD85 (2012), Prix&Wette LIGO-T1200272]
- TwoSpect: First all-sky *binary* search $rac{10}{
 m Hz} = \sigma \lesssim 10 {
 m Hz}^{-1/2}$ [E. Goetz, GWPAW12 talk] (huge parameter space, search ongoing)

Astrophysical priors Current Sensitivities Future Sensitivities

Current Sensitivities: noise PSD $S_n(f)$

Current Sensitivities

Current Sensitivity: Targeted searches ($\sigma \approx$

Reinhard Prix

Astrophysical priors Current Sensitivities Future Sensitivities

Current Sensitivities: Targeted searches ($\sigma \approx \frac{1000}{\sqrt{Hz}}$

Astrophysical priors Current Sensitivities Future Sensitivities

Current Sensitivities: Einstein@Home ($\sigma \approx \frac{30}{\sqrt{Hz}}$)

Astrophysical priors Current Sensitivities Future Sensitivities

What future sensitivity improvements can we expect?

Generally, sensitivity gains can come from 3 factors:

- better (more sensitive) detectors $\sqrt{S_n}$
- e more computing power (Moore's law)
- etter search methods

Future Sensitivities

1. How much can we gain from future detectors?

Reinhard Prix

Introduction: What are CWs? Astrophy CW Search Methods Current status and future outlook Future S

Astrophysical priors Current Sensitivities Future Sensitivities

Future sensitivity: Targeted Searches h_0 ($\sigma \approx \frac{1000}{\sqrt{\text{Hz}}}$)

Astrophysical priors Current Sensitivities Future Sensitivities

Future sensitivity: Targeted Searches ϵ ($\sigma \approx \frac{1000}{\sqrt{Hz}}$)

Introduction: What are CWs? Astrophysical priors CW Search Methods Current Sensitivities Current status and future outlook Future Sensitivities

Future sensitivity: Targeted Searches ϵ ($\sigma \approx \frac{1000}{\sqrt{Hz}}$)

Introduction: What are CWs? Astrophysical priors CW Search Methods Current Sensitivities Current status and future outlook Future Sensitivities

Future sensitivity: Targeted Searches ϵ ($\sigma \approx \frac{1000}{\sqrt{Hz}}$)

Astrophysical priors Current Sensitivities Future Sensitivities

2. How much can we gain from Moore's law?

"Computing power doubles every \sim 2 years"

- 2nd generation: Advanced LIGO+Virgo, KAGRA,...
 ~ 2018/2019 ☞ ~ 3 doublings ☞ C₀[AL] ~ 8 × C₀
- 3rd generation, e.g. "Einstein Telescope" (ET):
 ~ 2025 2030 ☞ ~ 8 doublings ☞ C₀[ET] ~ 256 × C₀

How does h_0 sensitivity scale with C_0 ?

- Targeted searches: no gain
- Wide parameter-space searches: [Prix,Shaltev,PRD85 (2012)] $h_0 \sim [\mathcal{C}_0^{-1/16}, \mathcal{C}_0^{-1/8}] \stackrel{\text{here}}{\approx} \mathcal{C}_0^{-1/10}$

Sensitivity increase due to Moore's law (e.g. for E@H)

 σ [AL] \sim +25% in Advanced-detector (AL) era σ [ET] \sim +75% in Einstein Telescope (ET) era

Astrophysical priors Current Sensitivities Future Sensitivities

3. How much can we gain from *improved methods*?

Wide parameter-space searches are computationally limited, optimal search method unknown.

How much improvement do we expect?

- tuning of semi-coherent method (StackSlide) can yield +25% wrt recent E@H searches [Prix,Shaltev,PRD85 (2012)]
- Coherent follow-up can yield up to +80% improvement, unclear if computing cost affordable [IMP Shaltev, PhD thesis]

Combined: Future all-sky sensitivities (e.g. E@H)

$$\begin{split} \sigma[S5,S6] &\sim 30\,\mathrm{Hz}^{-1/2} \\ \sigma[\mathrm{AL}] &\sim [47,67]\,\mathrm{Hz}^{-1/2} \\ \sigma[\mathrm{ET}] &\sim [65,94]\,\mathrm{Hz}^{-1/2} \end{split}$$

Astrophysical priors Current Sensitivities Future Sensitivities

Future sensitivity of All-Sky Searches h_0

Astrophysical priors Current Sensitivities Future Sensitivities

Future sensitivity: Wide parameter-space ϵ

 $\sigma[S5] = 30 \text{Hz}^{-1/2}$

Astrophysical priors Current Sensitivities Future Sensitivities

Future sensitivity: Wide parameter-space ϵ

$$\sigma[\mathrm{AL}] = 67\mathrm{Hz}^{-1/2}$$

Astrophysical priors Current Sensitivities Future Sensitivities

Future sensitivity: Wide parameter-space ϵ

 $\sigma[\text{ET}] = 94\text{Hz}^{-1/2}$

Astrophysical priors Current Sensitivities Future Sensitivities

Conclusions

- No guaranteed future CW detections, but ...
- ... entering increasingly interesting territory!
- Future observations will definitely be informative (one way or the other), cutting substantially into the prior ranges
- Astrophysical conclusions will depend on exact nature of (non-)detection and assumed astrophysical models
- Lots of work remaining to improve our wide-parameter search *methods* (eg "Line-Veto", Hierarchical, ...)
- Expand our searches to new *categories*: e.g. "transient CWs" (lifetime \sim days) from NS glitches?

Astrophysical priors Current Sensitivities Future Sensitivities

You can help by running Einstein@Home!

Maximize available computing power

Cut parameter-space λ in small pieces $\Delta \lambda$

- Send workunits $\Delta \lambda$ to participating hosts
- Hosts return finished work and request next
- Public distributed computing project, launched Feb. 2005
- Currently \sim 100,000 participants, \sim 1PFlop/s (24x7)
- All-sky search for GWs from unknown neutron stars
- Analyzed LIGO data from S3, S4, S5, S6
- March 2009: also search for binary radio pulsars in Arecibo+Parkes data r First E@H discovery [Science 2010]
- Aug 2011: also search for γ-ray pulsars in Fermi-LAT data

