Noises in Interferometry

Katherine Dooley Cardiff University

H1 ITMX - 30 July 2014 - LHO alog 13044

3rd year project lecture Nov. 18, 2019

Undergraduate summer research experiences

- Modeling
- Data analysis
- Experiment

A career for travel lovers!

The places I've lived (+ Cardiff!)

Katherine Dooley

The gravitational wave detectors

The most precise ruler ever constructed.

Components of the interferometer

What the detectors really look like

What the detectors really look like

Noise categories

Noise categories

Components of the interferometer

Experimental challenge: noises

Background: From Initial to Advanced LIGO

Higher

power

A. Effler

Extreme isolation

Better optics

Katherine Dooley

12

More power...

- 100 W input power
- 5 kW on beam-splitter
- 1 MW in arm cavities

Radiation pressure and thermal effects become a

13

serious problem

...better optics...

- Better coatings (titania-doped layers)
- Monolithic suspensions
- Larger beam spots

...extreme isolation

Initial LIGO: single-stage suspensions

Advanced LIGO: quadruple-stage suspensions

Why mirror motion is not tolerable

• 5 cavities \rightarrow 5 length degrees of freedom

Why mirror motion is not tolerable

• GW detection relies on operation in the linear regime

Why mirror motion is not tolerable

• 5 cavities \rightarrow 5 length degrees of freedom

Seismic noise

Even when there is no noticeable earth quake...

Need:

- 10 orders of magnitude isolation at 30 Hz
- 9 orders of
 magnitude isolation
 at 0.15 Hz

Target displacement noise:

10⁻²⁰ m/rtHz at 30 Hz

http://link.aps.org/doi/10.1103/RevModPhys.86.121 (http://arxiv.org/abs/1305.5188)

Passive isolation

Vibration isolation ~ use a harmonic oscillator A harmonic oscillator provides vibration isolation above its resonant frequency

Recall: F[d/dt f(t)] = i w F(w)

Katherine Dooley

Passive isolation

Vibration isolation ~ use a harmonic oscillator A harmonic oscillator provides vibration isolation above its resonant frequency

Katherine Dooley

Passive isolation

Vibration isolation ~ use a harmonic oscillator A harmonic oscillator provides vibration isolation above its resonant frequency

Suspension Isolation: Initial LIGO (~2005)

Suspension Isolation: Initial LIGO (~2005) to ...

Suspension Isolation: Initial LIGO (~2005) to ...

Suspension Isolation: Initial LIGO (~2005) to Advanced LIGO (~2014)

Advanced LIGO quadruple suspension

Test mass suspension on 2-stage in-vacuum isolation table

G1401207

Auxiliary optics on 1-stage in-vacuum isolation table

Virgo seismic isolation

Advanced LIGO Noise budget

Challenges: squeezed film damping

LIGO-T0900582

0.7

Challenges: higher power

Radiation pressure and thermal effects become a technical challenge

Dooley et al. J. Opt. Soc. Am. A 30 (2013)

SNR scales with sqrt(power)

Katherine Dooley

The uncertainty principle:

 $\Delta X_1 \Delta X_2 \ge 1$

Image: S. Dwyer

Katherine Dooley

Squeezing in an interferometer

Vacuum fluctuations enter the interferometer from all ports where no classical field exists.

C Caves (1981) Phys. Rev. D 23, 1693

Squeezing demonstration

Challenge: length-to-angle coupling

- Control of relative mirror motion goes to upper two suspension stages
- Angular motion induced due to the many length-to-angle coupling paths.

Alignment feedback is a limiting noise source

Angular sensors impress noise onto the gravitational-wave signal

> Dooley et al. J. Opt. Soc. Am. A 30 (2013)

Katherine Dooley

Livingston pre-mode cleaner reflected beam, 2011

Thanks for your attention and good luck!

Katherine Dooley