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Coordinates & metric

The Strong Principle of Equivalence

Strong Principle of Equivalence: In an arbitrary
gravitational field, at any given spacetime point, we can
choose a locally inertial reference frame such that, in a
sufficiently small region surrounding that point, all
physical laws take the same form they would take in
absence of gravity, namely the form prescribed by Special
Relativity.

Nature has no preferred coordinate system ⇒ we need
to be able to write physical laws in a form that is
valid in any coordinate system.
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Coordinates & metric

Coordinates

We must abandon global inertial coordinates (e.g.,
(t, x , y , z) in flat spacetime): they do not exist for a
general curved spacetime. Inertial coordinates exist only
locally.

Axiom used by Gauss for non-Euclidean geometries:
At any given point in space, there exist a locally
Euclidean reference frame such that, in a sufficiently
small region surrounding that point, the distance between
two points is given by the law of Pythagoras.

One needs, therefore, to consider general curvilinear
coordinates xα.



5/183

PX4224: Advanced General Relativity and Gravitational Waves

Lecture 1: Curved Geometry and Geodesics [Hartle, Ch. 7 & 8]

Coordinates & metric

Line element

Line element in a local inertial frame: ds2 = ηµνdξ
µdξν ,

where ηαβ = diag(−1, 1, 1, 1) is the flat space metric.

Switch to a generic frame where coordinates are labelled
xα(ξα). The curved spacetime line element is

ds2 = ηαβ
∂ξα

∂xµ
dxµ

∂ξβ

∂xν
dxν = gµν(x)dxµdxν (1.1)

The spacetime metric components gαβ are symmetric
with respect to interchange of α and β. How many
independent components do we have in spacetime?
Answer: 10
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Coordinates & metric

Local Inertial Frames

Inertial reference frames exist only locally. Given any
event P in spacetime, it is always possible to find
coordinates local inertial coordinates ξα such that

gαβ|P = ηαβ ,
∂gαβ
∂ξγ

∣∣∣∣
P

= 0 (1.2)

(Hint: higher-order derivatives will play a role later.)

Local flatness is a consequence of the equivalence
principle (a freely falling observer should be in a local
inertial frame).
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Coordinates & metric

Light Cones & World Lines

General relativity inherits locally the light cone structure
of special relativity

Points separated from P by infinitesimal coordinate
intervals dxα can be

1 timelike separated from P (ds2 < 0)
2 null separated from P (ds2 = 0)
3 spacelike separated from P (ds2 > 0)

Light still travels along null world lines, but such lines are
no longer necessarily at 45◦ in a spacetime diagram.

Particles move along timelike world lines
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Coordinates & metric

Vectors in Curved Spacetime

They are defined locally as tangents to curves passing
through an event P ; i.e., they are defined in the tangent
space at P .

Vectors at different points “live” in different tangent
spaces and are not directly comparable (a(P) + b(Q) =?).

Forget position vectors: they are not defined locally.

Displacements dxα = xαP − xαQ between infinitesimally
separated points P and Q are still vectors.

If we restrict to locally defined vectors, most SR machinery
carries over to curved space with ηαβ → gαβ; e.g., the inner
product of two vectors is defined as a · b = gαβa

αbβ
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Coordinates & metric

Bases

A vector at a point can be decomposed in terms of a set of
basis vectors. There are two types of bases we will consider:

(i) A coordinate basis, denoted {eα}. Pick eα as the
tangent vector pointing along the xα coordinate axis:

(eα)β = δβα (in x coordinates) . (1.3)

The coordinate basis vectors are not necessarily unit
vectors or orthogonal to one another:

eα · eβ = gαβ . (1.4)

A coordinate basis is used for most calculations.



10/183

PX4224: Advanced General Relativity and Gravitational Waves

Lecture 1: Curved Geometry and Geodesics [Hartle, Ch. 7 & 8]

Coordinates & metric

Bases

(ii) An orthonormal basis, denoted {eα̂}. Since spacetime
is locally flat, we can always choose coordinates x ′ near
an event P so that gαβ(x ′)→ ηαβ:

ds2 = ηαβ dx
′αdx ′β . (1.5)

Choose {eα̂} as the coordinate basis vectors in this
special coordinate system:

(eα̂)β̂ = δβ̂α̂ (in x ′ coordinates) . (1.6)

By construction, the {eα̂} form an orthonormal set:

eα̂ · eβ̂ = ηα̂β̂ = diag(−1, 1, 1, 1) (1.7)

An orthonormal basis is useful for interpreting
measurements done by observers in spacetime.
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Hypersurfaces

Hypersurfaces

A 3-dimensional hypersurface in spacetime is defined by a
condition f (xα) = 0. Examples:

1 t − t0 = 0 (i.e., a t = const surface)

2 −t2 + r 2 + a2 = 0 (i.e., a Lorentz hyperboloid in flat
spacetime)

Often useful to split a region of spacetime into a “stack”
(foliation) of 3D hypersurfaces.

Each sheet can be considered a surface of constant time
in some coordinate system.

How we define simultaneity in GR.

Different families of hypersurfaces → different choices of
time coordinate.
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Hypersurfaces

Hypersurfaces

Tangent vectors t to a hypersurface f (xα) = 0 satisfy

tα
df

dxα
= 0 . (1.8)

The normal vector nα is defined by

0 = n · t = gαβ n
α tβ (1.9)

for any tangent vector (there are 3 independent ones).

A 3-d hypersurface is said to be spacelike if n · n < 0.
A 3-d hypersurface is said to be timelike if n · n > 0.
A 3-d hypersurface is said to be null if n · n = 0.

The 3-d line element on a 3-d hypersurface is obtained by
restricting the 4-d line element to the surface.
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Geodesics

Geodesics

Free particles in curved spacetime move along geodesics,
which are paths that extremise the proper time, τ :

S [xµ(σ)] ≡
∫ B

A

dτ =

∫ 1

0

dσ

√
−gµν

dxµ

dσ

dxν

dσ
. (1.10)

The geodesic equations in a general curved spacetime are
the Euler-Lagrange equations for the Lagrangian

L

(
xα(σ),

dxα(σ)

dσ
, σ

)
:=

dτ

dσ
=

√
−gαβ(x)

dxα

dσ

dxβ

dσ
(1.11)
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Geodesics

Geodesics

The geodesic equation is:

d2xα

dτ 2
+ Γαβγ

dxβ

dτ

dxγ

dτ
= 0 (1.12)

where

Γαβγ =
1

2
gαµ

(
∂gµβ
∂xγ

+
∂gµγ
∂xβ

− ∂gβγ
∂xµ

)
(1.13)

are the Christoffel symbols, and gαβ are the components
of the inverse matrix to gαβ.

Note that Γαβγ = Γαγβ
How many independent Christoffel symbols are there?
Answer: 40 in 4-d; 18 in 3-d; 6 in in 2-d.
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Geodesics

Null & Spacelike Geodesics

Because dτ 2 = −ds2 = 0 along any null curve, one
cannot use proper time as a parameter along light rays

However, it can be shown that one can always choose an
affine parameter λ such that the same form of Eq. (1.12)
holds for null geodesics:

d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0 (1.14)

For spacelike geodesics we can use the same equation
again with the proper length σ as the parameter.
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Geodesics

Exercise 1

The line-element of the unit 2-sphere is

ds2 = dθ2 + sin2 θdφ2

(a) Calculate the Christoffel symbols associated to this metric.
Since it’s two dimensional, there are only six.

(b) A particle is moving along the equator. What are its initial
position xα and velocity dxα

dσ
?

(c) Using the geodesic equation, show that the acceleration
d2xα

dσ2 vanishes. What does this tell you?

(d) What measurements could you make to demonstrate the
this surface is curved?
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Introduction

What are Gravitational Waves?

Mass produces spacetime curvature.

Special relativity imposes a finite speed limit (c) for any
type of communication.

Mass in motion produces ripples in spacetime curvature
that propagate at the speed of light: gravitational waves.

Gravitational waves carry significant amounts of energy.
However, due to the weakness of the gravitational
interaction, they are not easily detected.

For the time being, we assume the existence of gravitational
waves in general relativity and study their properties. We will
learn how they arise later in the course.
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Introduction

Properties of Gravitational Waves

They travel at the speed of light (c)

They are transverse to the propagation direction

They have two independent polarisation states (+ and ×)

They carry energy away from a radiating system

They can be detected by their effects on freely-falling test
particles
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Linearized gravitational wave

A Linearized Gravitational Wave

Simplest example: a ripple in the curvature of space-time
propagating in one direction, independent of the other two:

direction of propagation (z) is longitudinal direction

other two directions (x and y) are transverse

it is a plane wave

We assume that the geometry is close to flat and treat the
gravitational wave as a perturbation, so

gαβ = ηαβ + hαβ (2.1)
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Linearized gravitational wave

A Linearized Gravitational Wave

A simple example of gravitational wave propagating along
z is:

hαβ(t, z) =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 f (t − z). (2.2)

where we require |f (t − z)| � 1.

Typical amplitudes |f (t − z)| . 10−21. Linearized
approximation is fine: we are ignoring terms of size 10−40!
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Linearized gravitational wave

A Linearized Gravitational Wave

The line element for the spacetime is

ds2 = −dt2 + [1 + f (t − z)] dx2 + [1− f (t − z)] dy 2 + dz2

(2.3)
f (t − z) encodes the size and shape of the gravitational wave.
Note that f and hαβ are dimensionless.

Examples:

1 f (t − z) = a sin[ω(t − z)] is a gravitational wave of
amplitude a and frequency ω.

2 f (t − z) = b exp[−(t − z)2/2σ2] is a Gaussian wave
packet with width σ and amplitude b.
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Linearized gravitational wave

Detecting Gravitational Waves

Spacetime curvature is detectable through the motion of
test bodies, i.e., ones that move along geodesics and
produce no significant spacetime perturbation.

Curvature detection requires monitoring the relative
motion of at least two test bodies.

Let’s examine the motion of two bodies, initially at rest,
as a gravitational wave passes. We need to examine both
their co-ordinate motion and their proper distance.
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Linearized gravitational wave

Exercise 2

Consider two particles A and B at positions (0, 0, 0) and
(xB , yB , zB) initially at rest.

(a) What are their initial 4-velocities?

(b) Use the geodesic equation to determine the evolution of
the co-ordinate positions of the particles when a
gravitational wave of the form

ds2 = −dt2 + [1 + f (t − z)] dx2 + [1− f (t − z)] dy 2 +dz2

passes.

(c) Now, consider particle B at (L?, 0, 0). What happens to
the proper distance between the particles as the
gravitational wave passes.
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Linearized gravitational wave

Distances Do Change

The fractional change in distance δL is

δL(t)

L?
:=

L(t)− L?
L?

=
1

2
f (t) =

1

2
hxx(t)

For a gravitational wave of amplitude a and angular
frequency ω, we obtain

δL(t)

L?
=

a

2
sin(ωt).

The fractional distance oscillates with half the amplitude
and the same frequency of the gravitational wave.
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Linearized gravitational wave

Distances Do Change

For a particle at (0, L?, 0), we have

δL(t)

L?
= −1

2
f (t) =

1

2
hyy (t)

More generally, for a particle at distance L? from the
origin, in direction n̂i in the z=0 plane,

δL(t)

L?
=

1

2
hij(t)n̂i n̂j

δL(t)
L?

is the fractional strain produced by the gravitational
wave.
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Linearized gravitational wave

A Ring of Particles

Now, consider a perturbation

ds2 = −dt2 + [1 + f (t − z)] dx2

+ [1− f (t − z)] dy 2 + dz2

and a ring of particles ~n = L?(cos θ, sin θ, 0).
Then,

δL(t)

L?
=

1

2
f (t)(cos2 θ − sin2 θ) =

1

2
f (t) cos 2θ

This is an ellipse with semi-major/minor axis
L?(1± 1

2
|f (t)|).
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Gravitational Wave polarisations

A Second Polarisation

So far, we considered only a single gravitational wave
polarisation:

hαβ(t, z) =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 f (t − z) , |f (t − z)| � 1 .

(2.4)
This is not the most general possible form of a gravitational
wave travelling in the z-direction. This can by shown by
considering a change of co-ordinates.
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Gravitational Wave polarisations

Exercise 3

Starting from the perturbed metric:

ds2 = −dt2 + [1 + f (t − z)] dx2 + [1− f (t − z)] dy 2 + dz2

consider a change of variables to x ′, y ′ given by

x =
1√
2

(x ′ + y ′) y =
1√
2

(y ′ − x ′)

and derive the metric in these co-ordinates and the form of
hαβ.



30/183

PX4224: Advanced General Relativity and Gravitational Waves

Lectures 2 - 4: Gravitational Waves [Hartle, Ch. 16]

Gravitational Wave polarisations

Two Polarisations

The general solution for a GW propagating in the z direction is

hαβ(t, z) =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 h+

︸ ︷︷ ︸
“plus”

polarisation

+


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 h×

︸ ︷︷ ︸
“cross”

polarisation

.

(2.5)
where h+(t − z) and h×(t − z) are arbitrary functions.

[We have not proved this, but it is not difficult.]
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Gravitational Wave polarisations

The Effect of Gravitational Waves

Gravitational waves are deformations of space itself that
stretch it first in one direction, then in the perpendicular one.

6

Gravitational Wave Basics

      A consequence of Einstein’s general theory of relativity

      Emitted by a massive object, or group of objects,

      whose shape or orientation changes rapidly with time

Waves travel away from the source at the speed of light 

Waves deform space itself, stretching it first in one direction, then

in the perpendicular direction

Time

“Plus”

polarization

“Cross”

polarization
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Detectors

Detecting Gravitational Waves: Interferometers

A laser interferometer is shaped like an L to take advantage of
the quadrupolar deformations produced by a passing
gravitational wave.

14

Interferometric GW Detectors

Take advantage of the tidal nature of GWs.

A laser is used to measure the relative lengths of two orthogonal paths 

(“arms”).

! LIGO:  L = 4 km.  Can measure  

!  dL/L < 10-21 

!  dL < 10-18 m ~ 1/1000 the size of a proton

… causing the 

interference patter at 

the photodiode to 

change.

As a wave passes, the 

arm lengths change in 

different ways …
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Detectors

Interferometer Basics

We have seen that a plus polarised wave propagating in
the z-direction will cause an alternate expansion and
contraction of distances in the x and y directions.

A difference in length of the two arms will lead to an
interference pattern:

1 Constructive interference when

∆L = L(x) − L(y) = nλ, n = 0, 1, 2, . . .

2 Destructive interference when

∆L =

(
n +

1

2

)
λ, n = 0, 1, 2, . . .

A path length difference will manifest as an interference
pattern at the output photodiode.
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Detectors

Effect of Gravitational Waves

A passing gravitational wave will change the lengths of
the arms and cause an interference pattern to be formed
at the detector output.

Taking a + polarised gravitational wave propagating in
the z-direction,

δLx
Lx

= +
1

2
a sin(ωt)

δLy
Ly

= −1

2
a sin(ωt) (2.6)

The amplitude and frequency can be inferred from the
observed interference pattern.

Since the change in length is proportional to the length, a
longer interferometer will be more sensitive
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Detectors

Gravitational Wave Detectors

The above is a simplified discussion of gravitational wave
detectors. More details will follow later in the course. In
particular:

When the arm lengths are equal there is actually
destructive interference. This is due to phase changes of
the light when it is reflected by the mirrors.

We have not discussed the additional mirrors used to build
up power in the arms and increase detector sensitivity.

We have not discussed noise sources and detector
sensitivity.
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Detectors

Gravitational Wave Detectors

Several kilometer-scale interferometers have operated since
2005, alternating periods of observing and upgrades:

Two LIGO detectors in the US: Livingston, LA & Hanford,
WA (4 km arms). Made the 1st detection in Sept. 2015.
The Virgo detector in Pisa, Italy (with 3 km arms).
Observed with LIGO during August 2017 and participated
in two detections.
The GEO-600 detector in Hannover, Germany (with
600 m arms). Primarily a technology development
platform, also participated in observing up to 2010.

LIGO and Virgo have a sensitivity about

δL/L < 10−22

δL < 10−19m ∼ 1/1000 the diameter of a proton.
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Detectors

Gravitational Wave Detectors

The detections made so far are all mergers of black holes
(BBH) or neutron stars (BNS). They include:

GW150914: BBH, total mass 65 M�. HL

GW151226: BBH, total mass 22 M�. HL

GW170104: BBH, total mass 51 M�. HL

GW170608: BBH, total mass 19 M�. HL

GW170814: BBH, total mass 55 M�. HLV

GW170817: BNS, EM counterpart observed in gamma,
X, optical, IR, radio bands. HLV

KAGRA a new underground detector in Japan will be online in
2019-2020. LIGO-India is currently selecting its site, might be
observing by 2025.
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Detectors

LIGO Hanford Observatory

16

LIGO Hanford Observatory
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Energy in Gravitational Waves

Energy in General Relativity

The energy density in Newtonian gravity is

εNewt = − 1

8πG
[∇Φ(x)]2 (2.7)

One might try to generalise the above by replacing ∇Φ(x)
by derivatives of the metric. But, physical quantities in
GR cannot depend upon the choice of co-ordinates, and
we can choose co-ordinates where they vanish.

There is no local notion of energy in a gravitational field
in general relativity (in contrast to Newtonian gravity).

This absence is part of the profound shift in viewpoint
from gravity as a force field operating in spacetime to
gravity as spacetime.
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Energy in Gravitational Waves

Energy in Gravitational Waves

We can associate energy to an entire spacetime when it is
asymptotically flat, e.g. black hole masses.

We can obtain an approximate expression, when the
wavelength of the waves is much smaller than the scale of
curvature. This energy is an average energy density over
spacetime volumes the dimensions of which are larger
than the wavelength but much smaller than the
background curvature scale.
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Energy in Gravitational Waves

Energy in Gravitational Waves

We can get an answer based on simple arguments. Consider
the waveform f (t − z) = a sin(ω(t − z)). Then:

Assume that energy density is proportional to the
amplitude squared, ε ∝ a2 (as for other waves).

The units of energy density are ML−1T−2.
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Energy in Gravitational Waves

Exercise 4

(a) The units of energy density are ML−1T−2.

(b) What (unique) combination of ω,G and c has the same
dimensions as energy density?
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Energy in Gravitational Waves

Energy in Gravitational Waves

We can get an answer based on simple arguments. Consider
the waveform f (t − z) = a sin(ω(t − z)). Then:

Assume that energy density is proportional to the
amplitude squared, ε ∝ a2 (as for other waves).
The units of energy density is ML−1T−2. The only way to
obtain these dimensions is with ε ∝ c2ω2

G
.

The energy density of a gravitational wave with amplitude
a and angular frequency ω is

εGW =
c2ω2a2

32πG
Their speed is c , so their energy flux is

fGW = εGWc =
c3ω2a2

32πG
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Energy in Gravitational Waves

Exercise 5

(a) For a typical gravitational wave that advanced LIGO aims
to detect, a ≈ 10−22 and the frequency f ≈ 200Hz.
Substitute these into the expression:

fGW =
c3ω2a2

32πG

to calculate the typical energy flux of a gravitational wave.

(b) What would the luminosity of the source (assuming
uniform emission) be if it were at:

i The galactic centre (≈ 10kpc)
ii The Virgo cluster (≈ 10Mpc)
iii The Coma supercluster (≈ 100Mpc)
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Lectures 5 - 7: “A Little More Math”

[Hartle, Ch. 20]
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Towards the Einstein Equation

The Einstein Equation is a set of differential equations for the
metric; Schwarzschild metric, Kerr metric, gravitational waves,
etc. are possible solutions.

Studying this equation requires three final mathematical
concepts:

A more rigorous definition of vectors in terms of
directional derivatives.

Tensors: generalizations of vectors. Physically
measurable quantities in GR are tensors (e.g., metric,
curvature).

Covariant derivative: how we take derivatives of tensors
(for making differential equations).
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Vectors

Vectors

We defined a vector as a tangent to a curve xα = xα(σ)
at a point (event) P . The vector t has components

tα :=
dxα

dσ

∣∣∣∣
P

(3.1)

with respect to a coordinate basis {eα} associated with
xα.

A vector defined this way is sometimes called a tangent
vector.
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Vectors

Vectors as directional derivatives

We can also consider t as a directional derivative operator.

Consider a function f = f (xα) and a curve xα(σ).

The directional derivative along the curve, at the point
labelled by σ is

df

dσ
= lim

ε→0

[
f (xα(σ + ε))− f (xα(σ))

ε

]
=

dxα

dσ

∂f

∂xα
(3.2)

The vector t with coordinate basis components

tα =
dxα

dσ
(3.3)

is a tangent vector to the curve.
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Vectors

Directional Derivatives

The directional derivative at σ is specified by t and we
can write

d

dσ
= tα

∂

∂xα
. (3.4)

There is a one to one correspondence between vectors
and directional derivatives:

a = aα
∂

∂xα
(3.5)
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Vectors

Directional Derivatives

We could have used this definition in flat space. Given a
directional derivative, we can use it to construct a
directed line segment. But, we do not need to!

On the other hand, directed line segments do not work in
curved space. Directional derivatives do.

We can just work with directional derivatives. Usual
vector algebra works. Simply think of

eα =
∂

∂xα
(3.6)

as a coordinate basis.

From now on, think of vectors as directional derivatives.
The linear space of directional derivatives is the tangent
space mentioned before.
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Vectors

Example: Change of Co-ordinates

How do the components of a vector a change under a
co-ordinate transformation xα → x ′α(xβ)?

We can calculate

∂

∂xα
=
∂x ′β

∂xα
∂

∂x ′β

Use this to calculate the components of a

a = aα
∂

∂xα
= aα

∂x ′β

∂xα
∂

∂x ′β
= a′β

∂

∂x ′β

So we obtain

a′β =

(
∂x ′β

∂xα

)
aα and aα =

(
∂xα

∂x ′β

)
a′β (3.7)
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Vectors

Example: Cartesian and Plane Polar Coordinates

Consider 2-d flat space in either Cartesian xα = (x , y) or
polar coordinates x ′α = (r , φ).

Transformation equations x ′α = x ′α(xα):

r =
√

x2 + y 2 , φ = arctan(y/x)

Inverse transformation equations xα = xα(x ′α):

x = r cosφ , y = r sinφ
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Vectors

Example: Cartesian and Plane Polar Coordinates

Transformation matrix:

∂x ′α

∂xβ
=

(
∂r
∂x

∂r
∂y

∂φ
∂x

∂φ
∂y

)
=

(
cosφ sinφ

− sinφ
r

cosφ
r

)
Inverse transformation matrix:

∂xα

∂x ′β
=

(
∂x
∂r

∂x
∂φ

∂y
∂r

∂y
∂φ

)
=

(
cosφ −r sinφ
sinφ r cosφ

)
We can express the polar coordinate basis vectors as{

er = cosφ ex + sinφ ey

eφ = −r sinφ ex + r cosφ ey
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Dual Vectors

Dual Vectors

Dual vectors (or co-vectors or one-forms) are defined as
linear mappings from the space of vectors V at a point P
to the real numbers — i.e., ω : V → R satisfying:

1 ω(a + b) = ω(a) + ω(b), ∀ a,b.
2 ω(αa) = αω(a), ∀ α ∈ R and ∀ a.

Using linearity, and assuming zero maps to zero, one can
write

ω(a) = ω(aαeα) = aαω(eα) = aαωα (3.8)

where ωα := ω(eα) are defined to be the components of
the dual vector ω with respect to the xα coordinate basis.
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Dual Vectors

The Gradient as a Dual Vector

The derivative of a function in the direction specified by a
vector t is

df

dσ
= tα

∂f

∂xα
(3.9)

The derivatives of f (xα) specify a map from any vector t
to real numbers:

∇tf = df

(
d

dσ

)
= tα

∂f

∂xα
(3.10)

Therefore, the gradient of a function, ∇f , is a dual
vector with components

(∇f )α =
∂f

∂xα
(3.11)
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Dual Vectors

Basis of Dual Vectors

We can introduce a set of linearly independent dual
vectors eα, and write any dual vector as cotangent space

ω = ωαeα

The numbers ωα are the components of the dual vector in
the basis eα.

It is most convenient to work with a dual basis that
satisfies

eα(eβ) = δαβ (3.12)

i.e., the coordinate basis vectors and dual basis vectors
are dual to one another.
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Dual Vectors

Example: Change of Co-ordinates

How do the components of a dual vector ω change under a
co-ordinate transformation xα → x ′α(xβ)?

We know the ω(a) is independent of the choice of
co-ordinates so, using (3.7)

ω(a) = ωαa
α = ω′βa

′β

= ω′β

(
∂x ′β

∂xα

)
aα

Therefore, the components of a dual vector transform as

ω′α =

(
∂xβ

∂x ′α

)
ωβ and ωα =

(
∂x ′β

∂xα

)
ω′β (3.13)



58/183

PX4224: Advanced General Relativity and Gravitational Waves

Lectures 5 - 7: “A Little More Math” [Hartle, Ch. 20]

Correspondence Between Vectors and Dual Vectors

Identifying Vectors and Dual Vectors

The metric gαβ allows one to identify vectors with dual
vectors and vice-versa.

For a fixed vector a the inner product defines a map from
vectors b to real numbers as

a(b) = a · b = gαβa
αbβ (3.14)

Hence,
aβ := gαβa

α (3.15)

are the components of a dual vector associated with a.

This gives a correspondence between the vector with
components aα and the dual vector with components aα.
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Correspondence Between Vectors and Dual Vectors

Identifying Vectors and Dual Vectors

To transform a dual vector to a vector, we require the
inverse of the metric, defined by

gαγgγβ = δαβ (3.16)

Then, given the components ωβ of a dual vector, one can
associate a vector with components

ωα := gαβωβ (3.17)

The correspondence between a vector and dual vector via
aα := gαβa

β is called lowering of an index with the
metric.

The correspondence between a dual vector and vector via
aα := gαβaβ is called raising of an index with the
metric.
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Correspondence Between Vectors and Dual Vectors

Exercise 6

Consider the two dimensional metric

gαβ =

(
F 1
1 0

)
and the vectors (or dual vectors)

aα = (1, 0) bα = (0, 1) cα = (1, 0) dα = (0, 1)

Calculate

1 gαβ

2 a · a and c · c
3 a · b and c · d
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Correspondence Between Vectors and Dual Vectors

Example: Normal and Tangent Vectors

An example of the correspondence is the association of a
normal vector n with the (dual vector) gradient of a function
f (xα) = const defining a 3-d surface in spacetime—i.e.,

nα := gαβ
∂f

∂xβ

Note that for any vector t tangent to the surface

t · n = gαβt
αnβ = gαβt

αgβµ
∂f

∂xµ
= tα

∂f

∂xα
= 0
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Tensors

Tensors

Tensors are a generalization of vectors & dual
vectors.

We defined a dual vector as a linear mapping from the
space of vectors V at point P to R.

We could equally consider a linear map from a pair of
vectors at P to R. We already met an of this:

g(a,b) = a · b = gαβa
αbβ (3.18)

The general notion is called a tensor.
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Tensors

Tensors

A tensor of rank r is a linear map from r vectors to R.

A scalar is a tensor of rank 0.

A dual vector is a tensor of rank 1.

The metric is a tensor of rank 2.

A third rank tensor t is a linear map from 3 vectors to R,
for example

t(a,b, c) = tαβ
γaαbβcγ (3.19)

We might consider maps from n vectors and m dual vectors to
R, but since we have learnt how to associate vectors and dual
vectors, this is not needed.
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Tensors

Operations on Tensors (and Examples)

Raising and lowering of indices with the metric:

1 aα := gαβaβ converts a dual vector to a vector.
2 We can raise both indices on a rank 2 tensor:

tαβ := gαγgβδtγγδ

Summing over a pair of indices (or “contracting”):
lowers the rank of a tensor by two: tµαµβ is a rank 2
tensor made from a rank 4 tensor tµαγβ.

Product of two tensors: tαβ = aαbβ are the
components of a rank 2 tensor constructed from two rank
1 tensors a and b.
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Tensors

Coordinate Transformations

The action of tensors on vectors is invariant under coordinate
transformations, we can work out how the components of a
tensor change (just like we did for dual vectors).

Example: metric

g ′αβ = gµν
∂xµ

∂x ′α
∂xν

∂x ′β
(3.20)

General expression

T ′αβ...γδ... = T µν...
λσ...

(
∂x ′α

∂xµ
∂x ′β

∂xν
. . .

) (
∂xλ

∂x ′γ
∂xσ

∂x ′δ
. . .

)
. (3.21)
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Tensors

Exercise 7

Starting from the 2-d cartesian metric,

ds2 = dx2 + dy 2 ,

make use of the transformation rules for the metric gαβ, to
calculate the metric in polar coordinates (r , φ).
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Tensors

Coordinate Transformations

If the components of a tensor vanish with respect to one
basis, they vanish with respect to any other basis.

If you can show the equality of the components of two
tensors in one basis, then the two tensors are equal.
Choose coordinate systems to make your life easy!

Not everything we have worked with is a tensor! Most
importantly, coordinates xα and the Christoffel symbols
Γαβγ are not tensors.
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Tensors

So What is the Point of Tensors?

A physical law written as a tensor equation is valid
in all coordinate systems – it is invariant. E.g.: The
Einstein equation is

Rµν −
1

2
gµνR = 8πTµν . (3.22)

It takes this same form in any choice of coordinates.

If we write laws using tensors, they will automatically
obey the principle of relativity in all frames (not just
locally inertial ones).
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Covariant Derivative

Covariant Differentiation

We have seen earlier that the partial derivative of a
function f is a dual vector ∇f with components

∇αf =
∂f

∂xα
(3.23)

It would be useful to have a similar definition for a vector,
i.e. we would like to be able to take the derivative of a
vector ∇v and get a rank 2 tensor.

Similarly for tensors of other ranks.

This would give us a definition of differentiation which is
co-ordinate independent.
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Covariant Derivative

Parallel Transport

To compute the derivative of a vector, we need to
subtract the vector evaluated at nearby space-time points.

But, vectors at different points live in different tangent
spaces ⇒ we cannot subtract them directly.

We must find a way to transport vectors from one point
to another.

In flat space, we would simply do this by keeping the
co-ordinate components constant as we move the vector.
This is called parallel transport.

We can generalise this to curved space by working in a
local inertial frame.
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Covariant Derivative

Parallel Transport and Covariant Differentiation

Covariant derivative of a vector field

∇tv(xα) = lim
ε→0

v(xα + εtα)|| transport to xα − v(xα)

ε
(3.24)

The way to evaluate this, work in a local inertial frame:

(∇tv)α = tβ
∂vα

∂xβ
or ∇βv

α =
∂vα

∂xβ
(LIF) (3.25)
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Covariant Derivative

Covariant Differentiation

In an arbitrary coordinate system, we have to take into
account the change in the basis vectors as we move from
point to point.

To see why, note that ∂vα

∂xβ
of the non-constant radial

vector field v r (r , φ) = 1, vφ(r , φ) = 0 is zero!

Although the components of v are constant, the basis
vectors in polar coordinates change from point to point.

When we parallel transport a vector field, the components
of the vector field can change proportionally to

1 the components of the vector vα

2 the displacement dxα

⇒ vα|| (x
δ) = vα(xδ + dxδ) + Γ̃αβγ(xδ)vγ(xδ)dxβ(xδ)
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Covariant Derivative

Covariant Differentiation

We now want to determine the coefficients Γ̃αβγ

We can do this by considering geodesics. The unit
tangent to a curve u must be unchanged under parallel
propagation, i.e.

(∇uu)α = uβ
(
∂uα

∂xβ
+ Γ̃αβγu

γ

)
= 0 (3.26)

But, we already know that u satisfies the geodesic
equation.

From this, it follows that Γ̃αβγ = Γαβγ.
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Covariant Derivative

Covariant Differentiation

Covariant derivative

∇βv
α =

∂vα

∂xβ
+ Γαβγv

γ (3.27)

where Γαβγ are the Christoffel symbols.

Geodesic equation

We can also rewrite the geodesic equation as:
A geodesic is a curve which satisfies

∇uu = 0 (3.28)
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Covariant Derivative

Covariant Derivative of Dual Vectors

We can easily derive this from what we know:

The covariant derivative of a scalar field φ is just the
ordinary partial derivative:

∇αφ =
∂φ

∂xα

The covariant derivative obeys the product rule, e.g.

∇α(ωβv
β) = (∇αωβ)vβ + ωβ(∇αv

β) (3.29)

This gives

∇αωβ =
∂ωβ
∂xα
− Γµβαωµ (3.30)

Note the minus sign in front of the Christoffel symbol.
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Covariant Derivative

Covariant Derivative of Tensors

General case:

∇α (T µν···
λσ··· ) =

∂

∂xα
(T µν···

λσ··· )

+
(

ΓµαβT
βν···
λσ··· + ΓναβT

µβ···
λσ··· + . . .

)
-
(

ΓβαλT
µν···
βσ··· + ΓβασT

µν···
λβ··· + . . .

)
. (3.31)

Covariant derivative = partial derivative + (1 Γ term for each
raised index) − (1 Γ term for each lowered index).
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Covariant Derivative

Covariant Derivative of the Metric

The covariant derivative of the metric is:

∇µgαβ =
∂gαβ
∂xµ

− Γναµgνβ − Γνβµgαν (3.32)

In a local inertial coordinate system,
∂gαβ
∂xµ

= 0, so
Γµαβ = 0 and

∇µgαβ = 0 . (3.33)

But since ∇µgαβ = 0 is a valid tensor equation, it holds
in all coordinate systems.
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Covariant Derivative

Exercise 8

Show that ∇µgαβ = 0.
To do this, you will need to make use of the explicit form of
the Christoffel symbols:

Γµαβ =
1

2
gµν

(
∂gνα
∂xβ

+
∂gνβ
∂xα

− ∂gαβ
∂xν

)
(3.34)
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Lectures 8-10 : Curvature and the

Einstein Equation [Hartle, Ch. 21]
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Introduction

The central result of general relativity: Einstein’s Equation

(
a measure of local
space-time curvature

)
=

(
a measure of matter
energy density

)
(4.1)

Colloquially: “Matter tells space how to curve, space tells
matter how to move”

In this section, we introduce curvature and the vacuum
Einstein equation. Later, we introduce energy density.
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Tidal Gravitational Forces

Tidal Gravitational Forces

A gravitational field can be detected by monitoring the
separation of two freely-falling particles.
In Newtonian gravity, the equation of motion for a single
freely-falling particle moving in a gravitational potential
Φ = Φ(xk) is

d2x i

dt2
= −δij ∂Φ

∂x j
(4.2)

If a second freely-falling particle is displaced from the first
by χi , where |χi | � 1, then

d2χi

dt2
= −δij ∂2Φ

∂x j∂xk

∣∣∣∣
x

χk (4.3)

where the second partial derivative of Φ is evaluated at
the location of the first particle.
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Tidal Gravitational Forces

Exercise 9

Show that for Φ = −GM/r , if two freely-falling particles are
separated by a small radial displacement χ, then

d2χ

dt2
= +

2GM

r 3
χ

Similarly, if two freely-falling particles are separated by a small
transverse displacement χ, then

d2χ

dt2
= −GM

r 3
χ

Hence a ring of freely-falling particles would be distorted into
an ellipse (stretched in the radial direction, compressed
in the transverse direction) as it fell toward the center of
the gravitational potential.
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Tidal Gravitational Forces

Tidal Gravitational Forces

The quantity
∂2Φ

∂x j∂xk
(4.4)

is called the Newtonian tidal acceleration tensor.

Note that

∇2Φ = δij
∂2Φ

∂x i∂x j
= 4πGµ (4.5)

is the field equation for Newtonian gravity.
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Geodesic Deviation

Geodesic Deviation

In GR, the Riemann curvature tensor plays the role of the
Newtonian tidal acceleration tensor.

To see this, let us consider two nearby geodesics.

We take the proper time to be τ .

Let u denote the tangent vector to the first geodesic.

Let χ denote the separation vector connecting points
along the geodesics with equal values of τ .

Note: there is no unique way to specify the relative time on
the two geodesics. E.g., we could require χ · u = 0 at τ = 0.
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Geodesic Deviation

Geodesic Deviation

In analogy with the Newtonian case, we need to calculate the
second derivative, or “acceleration”, of χ.

The derivative of the vector χ with respect to τ is given
by the covariant derivative along u

v :=∇uχ (4.6)

The second derivative of χ with respect to τ is given by

w :=∇u∇uχ (4.7)
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Geodesic Deviation

We want an expression for w that is linear in χ and does not
contain its derivatives. We achieve this by

1 Substituting

vα =
dχα

dτ
+ Γαβγu

βχγ

into

wα =
dvα

dτ
+ Γαβγu

βvγ

2 Eliminating the d2χ
dτ2 term by using the geodesic equation

at xα + χα :

d2(xα + χα)

dτ 2
+ Γαβγ(x + χ)

d(xβ + χβ)

dτ

d(xγ + χγ)

dτ
= 0

expanded to leading order in χα.

3 Using the geodesic equation at xα to eliminate d2x
dτ2 .
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Geodesic Deviation

Geodesic Deviation & Curvature

Hartle does the calculation in detail (posted in learning
central) – recommend working through it. The result:

1 is linear in χ (and not its derivatives)

2 depends upon two factors of uα (recall that
d/dτ = uα∂α)

3 contains terms ∂Γ and ΓΓ.

We obtain the geodesic deviation equation.

∇u∇uχ
α = −Rα

βγδu
βuδχγ (4.8)

where Rα
βγδ are the components of the Riemann tensor.
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Geodesic Deviation

Riemann Curvature Tensor

The explicit expression for the Riemann curvature tensor
is

Rα
βγδ =

∂Γαβδ
∂xγ

− ∂Γαβγ
∂xδ

+ ΓαγεΓ
ε
βδ − ΓαδεΓ

ε
βγ (4.9)

The Riemann tensor encodes the failure of initially parallel
geodesics to remain parallel.

In other words, tidal effects of gravitation can be
attributed to the local curvature of spacetime itself, and
not to some “mysterious” force called gravity.
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Geodesic Deviation

Geodesic Deviation in a Freely Falling Frame

Consider a freely falling observer at xα(τ), moving on a
geodesic.

We can define an orthonormal basis {eα̂} (where eτ̂ = u)
at one point on the geodesic

To extend to other points, we parallel propagate the basis
vectors along the geodesic, i.e.

∇ue α̂ = 0 and ∇ue α̂ = 0

Then, we want to evaluate the geodesic deviation
equation in these co-ordinates.

First, an aside on tensor components in an orthonormal
frame. . .
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Geodesic Deviation

Tensor Co-ordinates in an Orthonormal Basis

Given a vector a, its components in a given basis are:

aα = eα · a and aα = eα · a ,

and similarly for tensors.

For orthonormal bases:

aα̂ = eα̂ · a and aα̂ = eα̂ · a

and for a rank 2 tensor,

tα̂β̂ = (eα̂)α(eβ̂)βtαβ

where (eα̂)α are the components of the orthonormal basis
vectors in the coordinate system we are using.
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Geodesic Deviation

Geodesic Deviation in a Freely Falling Frame

We need to multiply both sides of the geodesic deviation
equation

∇u∇uχ
α = −Rα

βγδu
βuδχγ

by (eα̂)α.
By construction ∇ueα̂ = 0 so we can move it inside the
derivatives.
Also, eτ̂ = u, so we can write

d2χα̂

dτ 2
= −R α̂

τ̂ β̂τ̂χ
β̂

where

R α̂
β̂γ̂δ̂ = Rα

βγδ(eα̂)α(eβ̂)β(eγ̂)γ(eδ̂)
δ .

This is remarkably similar to the Newtonian expression.
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Geodesic Deviation

Exercise 10

For a weak static gravitational field described by the line
element

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)
[
dx2 + dy 2 + dz2

]
show that

Rjtkt =
∂2Φ

∂x j∂xk

to first-order in Φ.
Thus, in the weak field limit, we recover Newtonian gravity.
Hint: When evaluating the Riemann curvature, you can ignore
the ΓΓ terms as they will be quadratic in Φ.
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Riemann curvature

Properties of the Curvature Tensor

In a local inertial frame (Γ = 0, ∂Γ 6= 0), we can write the
Riemann curvature as (∂α is short-hand for ∂/∂xα):

Rαβγδ =
1

2
(∂γ∂βgαδ − ∂γ∂αgβδ + ∂δ∂αgβγ − ∂δ∂βgαγ)

(4.10)

This reveals the symmetries of the Riemann tensor:

Rαβγδ = −Rβαγδ
Rαβγδ = −Rαβδγ
Rαβγδ = Rγδαβ

Rαβγδ + Rαδβγ + Rαγδβ = 0

Rather than 44 independent components in 4-dimensions,
there are only 20. In 3-d there are 6 and in 2-d only 1.
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Einstein Equation in Vacuum

Einstein Equation

The vacuum field equation for Newtonian gravity is

∇2Φ ≡ δij
∂2Φ

∂x i∂x j
= 0 . (4.11)

Einstein proposed a similar equation for General Relativity:

Vacuum Einstein equation

gµνRναµβ = Rµ
αµβ = 0 . (4.12)

The Ricci tensor is defined by

Rαβ := Rµ
αµβ (4.13)

The vacuum Einstein equation can be written as Rαβ = 0.
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Einstein Equation in Vacuum

Einstein Equation

1 The Einstein equation (4.12) is a set of 10 coupled,
non-linear, second-order, partial differential
equations for the metric components gαβ.

2 There is no systematic way to solve a system of coupled,
non-linear partial differential equations. Very few
analytic solutions exist. These correspond to situations
with a high degree of symmetry.

3 More complicated situations require numerical solution of
the field equations. There is no analytic solution to the
two-body problem in GR.
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Einstein Equation in Vacuum

Examples of Solutions to the Einstein Equation

1 The Schwarzschild solution exterior to a
spherically-symmetric star or black hole.

2 The Kerr solution exterior to a black hole (i.e., an
axially-symmetric spacetime). Does not hold for stars.

3 Gravitational waves (a weak gravitational field far from a
non-stationary relativistic source).

4 Friedmann-Robertson-Walker cosmological solution for an
homogeneous and isotropic universe, etc.



97/183

PX4224: Advanced General Relativity and Gravitational Waves

Lectures 8-10 : Curvature and the Einstein Equation [Hartle, Ch. 21]

Linearized Gravity

Linearized Gravity

We want to show that the linearized gravity metric

gαβ = ηαβ + hαβ , (4.14)

where |hαβ| � 1,

hαβ(t, z) =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 h+(t−z)+


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 h×(t−z) ,

and h+(t − z) and h×(t − z) are arbitrary functions, is a
solution to the (linearized) Einstein equations.
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Linearized Gravity

Linearized Einstein Equations

It is easy to show that the Riemann and Ricci curvature
tensors vanish for flat space-time, ηαβ. So, flat space
satisfies the Einstein equation.

We will expand everything to leading order in hαβ,
ignoring anything of order h2.

We need to calculate the linearized Riemann and Ricci
tensors and show that they satisfy the Einstein equations.

Note: for quantities that vanish in the background, we
denote the leading order terms with a δ, for example
δRα

βγδ.
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Linearized Gravity

Exercise 11

Show that to first order in hαβ the Riemann tensor has
components

δRαβγδ =
1

2
(∂γ∂βhαδ − ∂γ∂αhβδ + ∂δ∂αhβγ − ∂δ∂βhαγ)

where ∂α is short-hand for ∂/∂xα.
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Linearized Gravity

Linearized Einstein Equations

The linearized Ricci tensor is:

δRαβ = δRµ
αµβ

=
1

2

(
∂µ∂αh

µ
β − ∂

µ∂µhαβ + ∂µ∂βh
µ
α − ∂α∂βhµµ

)
=

1

2
(−�hαβ + ∂αVβ + ∂βVα) (4.15)

where

� = ηαβ∂α∂β = − ∂2

∂t2
+∇2 (4.16)

is the so-called D’Alembertian (or wave operator) and

Vα := ∂βh
β
α −

1

2
∂αh

β
β (4.17)
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Linearized Gravity

Raising and Lowering Indices

Note that for weak gravitational fields, one typically raises
and lowers indices with the background Minkowski metric
ηαβ and ηαβ, and not with gαβ and gαβ. For example,

hαβ := ηαµhµβ , hαβ := ηαµηβνhµν . (4.18)

The only exception is gαβ, which still denotes the inverse
of gαβ, not ηαµηβνgµν . To first order

gαβ = ηαβ − hαβ (4.19)
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Linearized Gravity

A Word About Coordinate Transformations

It is always possible to find coordinates for which the
above decomposition is not valid — e.g., flat spacetime in
spherical polar coordinates does not satisfy (4.14), even
though the gravitational field is identically zero!

The set of coordinates xα in which (4.14) holds is not
unique. It is possible to make an infinitesimal
coordinate transformation xα → x ′α for which the
decomposition with respect to the new set of coordinates
still holds.

We will use this gauge freedom to our advantage to
simplify calculations.
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Linearized Gravity

Choice of Coordinates

Consider an infinitesimal coordinate transformation

x ′α := xα + ξα(x) where |∂αξβ| � 1 (4.20)

To first-order, the transformation matrix from x ′α to xβ is

∂xβ

∂x ′α
= δβα −

∂ξβ

∂x ′α
= δβα −

∂ξβ

∂xα
(4.21)

To first order, the metric components transform as

g ′αβ =
∂xµ

∂x ′α
∂xν

∂x ′β
gµν = gαβ − ∂αξβ − ∂βξα

or, equivalently,

h′αβ = hαβ − ∂αξβ − ∂βξα (4.22)

Since |∂αξβ| � 1, it follows that |h′αβ| � 1.
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Linearized Gravity

Choice of Coordinates – Lorentz Gauge

It is always possible to find a set of coordinates for which

Vα = ∂βh
β
α −

1

2
∂αh

β
β = 0

This is sometimes called the Lorentz condition (in
analogy with the Lorentz condition in electromagnetism).

To see this, consider how Vα transforms under an
infinitesimal coordinate transformation:

V ′α = Vα − ∂β∂βξα .

So, to set V ′α = 0, we need to solve the wave equation for
ξα:

�ξα = Vα
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Linearized Gravity

Linearized Gravity

In the Lorentz gauge, the equations for linearized gravity
are

�hαβ = 0 (4.23)

with the additional condition

Vα = ∂βh
β
α −

1

2
∂αh

β
β = 0 (4.24)

Thus, the metric perturbations satisfy the flat space wave
equation; hence the solutions can be interpreted as
gravitational waves.



106/183

PX4224: Advanced General Relativity and Gravitational Waves

Lectures 8-10 : Curvature and the Einstein Equation [Hartle, Ch. 21]

Linearized Gravity

Solving the Wave Equation

First, let’s recall the wave equation for scalar functions

�f = 0 . (4.25)

This has the solution

f (x) = ae ik·x where k · k = 0 . (4.26)

The most general solution is a superposition of plane
waves.
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Linearized Gravity

Gravitational Wave Solution

The most general gravitational wave solution is a linear
combination of plane waves:

hαβ = aαβ exp(ik · x) (4.27)

where kα satisfies:

ηαβk
αkβ = 0 (4.28)

i.e., gravitational waves propagate at the speed of light.

hαβ must also satisfy the Lorentz condition:

Vα = ∂βh
β
α −

1

2
∂αh

β
β = 0
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Linearized Gravity

Transverse Traceless Gauge

We have additional coordinate freedom to simplify things
further: any coordinate transformation satisfying

�ξα = 0⇔ ξα = Bαe
ik·x

will preserve the Lorentz condition.

Under such a transformation, a′αβ = aαβ − ikαBβ − ikβBα
and we can choose the Bα so that

a′ti = 0 a′ββ = 0 (4.29)

The second of these sets the trace of aαβ to zero.
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Linearized Gravity

Transverse Traceless Gauge

With ati = 0 and aββ = 0, the Lorentz condition simplifies:

att = 0 and k iaij = 0 (4.30)

The second of these ensures the wave is transverse: there
is no perturbation in the direction of propagation.

These 8 conditions define the transverse traceless (TT)
gauge.

We can simplify things further by choosing the z-direction
as the direction of propagation of the wave, so that
kα = (k , 0, 0, k), in which case we have:

att = 0 ati = 0

aiz = 0 axx + ayy = 0
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Linearized Gravity

Transverse Traceless gauge

The metric perturbations hαβ in the TT gauge are thus

hαβ =


0 0 0 0
0 a+ a× 0
0 a× −a+ 0
0 0 0 0

 e iω(z−t) (4.31)

This is the most general solution of the linearized Einstein
equation with definite frequency ω.

The most general solution is a superposition of waves
with different directions of propagation, amplitudes and
frequencies.
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Lectures 11-12: The Source of Curvature

[Hartle, Ch. 22]
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Introduction

In the previous section, we introduced

Einstein’s Equation

(
a measure of local
space-time curvature

)
=

(
a measure of matter
energy density

)

And discussed in detail the left hand side (curvature). Here, we
move on to the right hand side (matter and energy density).

We want to derive an expression for the stress-energy
density in the Einstein equation.

Start with an easier concept: number density
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Number Density

Number density

Consider a box of volume V? at rest containing N
particles. The number density is

n = N /V? (5.1)

Now, consider an observer moving with velocity V relative
to the box. The length of the box in that direction will be
contracted by a factor (1− V 2)1/2 so the volume is

V = V?(1− V 2)1/2 (5.2)

and the number density is

N = N /V = n(1− V 2)−1/2 (5.3)
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Number Density

Number density

The number density can be written as N = nut , where ut is
the time component of the 4-velocity of the box. This
motivates introducing the

Number current 4-vector

N = nu (5.4)

The spatial parts describe the number current density:

~N = n~u =
n ~V√

1− V 2
(5.5)

describing the flow of particles across a surface
(per unit area per unit time).
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Number Density

Conservation of Particles

By shrinking the volume V?, we can obtain an expression for
N(x) and ~N(x) at every point in spacetime.

Conservation Law

The number density and number current density must satisfy

∂N

∂t
+ ~∇ · ~N = 0 (or ∂αN

α = 0) (5.6)

Where the second expression holds in rectangular coordinates.
Integrating over a volume V of space, we obtain:

∂

∂t

∫
V
Nd3x︸ ︷︷ ︸

change in number

+

∫
∂V

~N · ~dA︸ ︷︷ ︸
flux through surface

= 0 (5.7)
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Number Density

Conservation of Particles

Summary: Densities of scalar quantities (number, charge) are
the time component of a 4-vector. Corresponding spatial
components are the current density.
Alternative view: Given a 4-vector number current N

1 The number of particles in volume ∆V (spacelike
surface), with timelike normal n is given by
∆N = N · n∆V .

2 The flux through area ∆A in time ∆t (timelike surface),
with spacelike normal n is given by ∆N = N · n∆A∆t.

Densities are fluxes in timelike dimensions through spacelike
surfaces, currents are fluxes in spacelike dimensions through
timelike surfaces.
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Energy & Momentum Density

Energy & Momentum Density

Densities of energy and momentum are the sources of
space-time curvature

We have introduced a density current 4-vector to
associate a scalar quantity with nα∆V
Energy and momentum form a 4-vector pα. We need a
rank-2 tensor to associate energy/momentum with nα∆V .

Stress Energy Tensor: Tαβ

∆pα = Tαβnβ∆V (5.8)
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Energy & Momentum Density

Energy & Momentum Density

Consider a space-like volume ∆V with a timelike normal
nα = (1, 0, 0, 0). Then

Energy density is

ε =
∆pt

∆V
= T tt (5.9)

Momentum density in direction i is

πi =
∆pi

∆V
= T it (5.10)
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Energy & Momentum Density

Example: Box of particles

Box of particles of rest mass m, number density n. With
respect to a moving frame:

1 energy = mγ where γ = (1− V 2)−1/2

2 number density N = nγ.

Energy density is number density × particle energy

ε ≡ T tt = (mγ)(nγ) = mnutut

Momentum density is number density × particle momentum

πi ≡ T it = (mγV i)(nγ) = mnuiut

The components of the stress-energy tensor are

Tαβ = mnuαuβ
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Energy & Momentum Density

Interpretation of T αj

Consider a 3-volume spanned by ∆y ,∆z ,∆t (normal
n = (0, 1, 0, 0)). Then the associated momentum is

∆pα = Tαx∆y∆z∆t

Time component T tx

T tx =
∆pt

∆A∆t

Flux of energy in the x-direction.

Flux of energy is the same thing as a momentum density.
Example: Box of particles.
For each particle, E = mγ, ~p = mγ ~V . So
energy flux = (energy density) × V = momentum density.
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Energy & Momentum Density

Interpretation of T αj

Spatial components T ix

T ix =
∆pi/∆t

∆A

i-th component of force per unit area exerted across a surface
with normal in x-direction Flux of energy in the x-direction.

More generally, components of force ~F exerted across area ∆A
with normal ~n:

∆F i = T ijnj∆A

T ij is the i-th component of force per unit area exerted across
a surface with normal in j-direction
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Energy & Momentum Density

Example: Pressure

For a fluid at rest, the force exerted across a surface is always
along its normal, and the same for all directions.
The stress tensor is diagonal, with diagonal entries equal to
pressure p:

T ij = pδij
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Energy & Momentum Density

Stress Energy Tensor

Tαβ =


energy energy
density flux

mom. stress
density tensor

 (5.11)

The stress energy tensor is symmetric, Tαβ = T βα.
Momentum density is equivalent to energy flux.
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Energy & Momentum Density

Example: Energy density measured by an Observer

Consider an observer with 4-velocity uobs, and a small volume
∆V with unit normal n = −uobs.
Energy momentum of the matter contained in that volume is

∆pα = Tαβ(−uβobs)∆V

So the energy is

∆E = −∆p · uobs = Tαβu
α
obsu

β
obs∆V

Energy density:
Tαβu

α
obsu

β
obs

or T0̂0̂ in orthonormal frame where e0̂ = uobs.
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Energy & Momentum Density

Conservation of Energy–Momentum

Conservation of Energy-Momentum in flat space-time

In flat space, energy of matter is conserved, so is the
momentum of matter. These four conservation equations can
be written as

∂Tαβ

∂xβ
= 0 (5.12)

Time component:

∂ε

∂t
+ ~∇ · ~π = 0

where ε is the energy density, ~π is the momentum density or
energy flux. Similar to number density equation we saw earlier.
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Energy & Momentum Density

Conservation of Energy–Momentum

Spatial components:

∂πi

∂t
= −∂T

ij

∂x j
≡ φi

where φi is a force density. This is ~F = m~a in continuum.
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Energy & Momentum Density

Example: Pressure force on a Volume

Consider a cube of size L (with edges aligned with the axes) in
a fluid for which T ij = δijp. Pressure forces on the y − z faces
are:

F1 = L2p(x , y , z)

F2 = −L2p(x + L, y , z)

The net force is

F x = F1 − F2 = L2[p(x , y , z)− p(x + L, y , z)]

≈ −L3∂p

∂x

This agrees with our definition of force density (φ = F/L3):

φx = −∂T
xj

∂x j
= −∂p

∂x
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Energy & Momentum Density

Perfect Fluid

A fluid is “perfect” when we can ignore heat condition,
viscosity, transport and dissipative processes. In this case:

Tαβ = diag(ρ, p, p, p) [Fluid rest frame]

= (ρ + p)uαuβ + ηαβp [General expression]

Here u is the fluid 4-velocity, ρ is the energy density and p is
the pressure. The energy density and pressure are related by
an equation of state:

p = 0 dust

p =
ρ

3
CMBR

p = −ρ vacuum energy
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Energy & Momentum Density

Conservation of Energy-Momentum

We want to generalise all of this to curved spacetime:

Perfect fluid stress energy

Tαβ = (ρ + p)uαuβ + gαβp (5.13)

in curved spacetime

Local conservation of Energy Momentum

∇βT
αβ = 0 (5.14)

Energy of matter is not conserved in curved spacetime, but
changes in response to the curved geometry.
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Energy & Momentum Density

Exercise 12

Show that the stress energy of the vacuum:

Tαβ
vac = −ρvacg

αβ = − Λ

8πG
gαβ

satisfies the local conservation law

∇βT
αβ = 0

provided that Λ is a constant.
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Energy & Momentum Density

The Einstein Equation

The Einstein Equation

(
a measure of local
space-time curvature

)
=

(
a measure of matter
energy density

)
(5.15)

We now have candidates for both curvature (Rαβ, R) and
energy density Tαβ. This suggests an equation of the form

Rαβ + λgαβR = κTαβ

for some constants λ and κ.
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Energy & Momentum Density

The Einstein Equation: Fixing λ

We know that ∇βT
αβ = 0. We use this to fix the value of

λ.To do this, we need the:

Bianchi Identity

∇αRβγδε +∇βRγαδε +∇γRαβδε = 0

By contracting indices appropriately, we obtain

∇β(Rαβ − 1

2
gαβR) = 0 (5.16)

This fixes λ = −1
2
. Introduce Einstein Tensor

Gαβ = Rαβ − 1

2
gαβR (5.17)
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Energy & Momentum Density

The Einstein Equation: Fixing κ

We fix κ by requiring that the Einstein equation reduces to
Newton’s gravity in the weak field limit:

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)
[
dx2 + dy 2 + dz2

]
In weak field, low velocity limit:

Rest mass energy, µ is small

Kinetic energy µV 2 is smaller (as V � c)

Potential energy µΦ is smaller (Φ is small)

So, only significant component of stress energy Tαβ is

T tt = µ + . . . (5.18)
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Energy & Momentum Density

The Einstein Equation: Fixing κ

In exercise 10, we calculated Rjtkt = ∂j∂kΦ. So, Rtt = ∇2Φ.
You can calculate the rest of the components of the curvature
tensor in a similar way (Appendix B of Hartle), and obtain:

Gtt = 2∇2Φ + . . .

and all other components of Gαβ are of order Φ2.
So, we have

2∇2Φ = κµ

Comparing with Newtonian gravity (∇2Φ = 4πGµ) fixes
κ = 8πG .
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Energy & Momentum Density

The Einstein Equation

Putting it all together, we get:

The Einstein Equation

Gαβ ≡ Rαβ −
1

2
gαβR = 8πGTαβ (5.19)

Sutton
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Lectures 13-15: Gravitational Wave

Emission [Hartle, Ch. 23]
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Linearized Einstein Equation with Sources

We now want to study solutions to the linearised Einstein
equation in the presence of matter. As before, we expand the
metric as

gαβ = ηαβ + hαβ where |hαβ| � 1 (6.1)

and look for a solution to

Rαβ −
1

2
gαβR = 8πGTαβ (6.2)

where the curvature produced by the source Tαβ is weak
enough that the linearised approximation holds.
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“Trace-reversed” amplitude

When solving the linearised equations in vacuum, it was useful
to introduce the Lorentz condition

Vα = ∂βh
β
α −

1

2
∂αh

β
β = 0

This is much simpler if we introduce the “trace-reversed”
amplitude

h̄αβ ≡ hαβ −
1

2
ηαβh (6.3)

Then, the Lorentz condition simplifies to

∂β h̄
αβ = 0 (6.4)
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Linearized Einstein Equation with Sources

We showed before (4.15) that in the Lorentz gauge,

δRαβ = −1

2
�hαβ

From which, we get:

Gαβ = δRαβ −
1

2
δR = −1

2
�h̄αβ (6.5)

So that
�h̄αβ = −16πGTαβ (6.6)
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Solving the wave equation with a point source

Let’s start with the scalar wave equation:

−∂
2f (x)

∂t2
+ ~∇2f (x) = j(x). (6.7)

Start by solving for a source localised in space and time, i.e.

j(x) = δ(t)δ(x)δ(y)δ(z) (6.8)

Spherical symmetry implies the solution can depend only on t
and r = |x |. Away from the source, the solution is

g(t, r) =
1

r
[O(t − r) + I (t + r)] (6.9)

which represent Outgoing and Ingoing waves. Physically, we
are only interested in outgoing waves.
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Solving the wave equation with a point source

The solution to

−∂
2g(x)

∂t2
+ ~∇2g(x) = δ(t)δ(x)δ(y)δ(z) (6.10)

is

g(t, r) = −δ(t − r)

4πr
(6.11)

Can show this by integrating over a small volume near the
origin.
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Solving the wave equation

Since the wave equation is linear, the solution for a general
source is the sum of the solutions for many point sources.
The solution to the wave equation with source j(t, x) can be
written:

f (t, x) =

∫
dt ′d3x ′g(t − t ′, ~x − ~x ′)j(t ′, x ′) (6.12)

Since g(t − t ′, ~x − ~x ′) ∝ δ(t − t ′ − |~x − ~x ′|), we evaluate the
integral at the retarded time, t ′ = tret ≡ t − |~x − ~x ′|:

f (t, x) = − 1

4π

∫
d3x ′

[j(t ′, x ′)]ret

|~x − ~x ′|
(6.13)
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Linearized Gravity Solution

Returning to linearised gravity, the solution is

h̄αβ(t, ~x) = 4

∫
d3x ′

[
Tαβ(t ′, ~x ′)

]
ret

|~x − ~x ′|
(6.14)

Note: this necessarily satisfies the Lorentz gauge condition.
Finally, if we are far from the source (r � Rsource) and the
waves have a long wavelength (λ� Rsource), then

h̄αβ(t, ~x) −→
r→∞

4

r

∫
d3x ′Tαβ(t − r , ~x ′) (6.15)

We’d like to rewrite in terms of T tt = µ, the mass density.
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Exercise 13

1 From the conservation law for Tαβ:

∂tT
tt + ∂kT

kt = 0 and ∂tT
tk + ∂lT

lk = 0 ,

show that

∂2T tt

∂t2
=

∂2T kl

∂xk∂x l

2 By Multiplying by x ix j and integrating over a volume that
encompasses the source (and integrating by parts) show∫

d3xT ij(x) =
1

2

d2

dt2

∫
d3x x ix jT tt(x)
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Generation of GWs

For systems with weak gravitational fields, long wavelength,
large r, the metric perturbation far from source is

h̄ij(t, ~x) =
2

r
Ï ij(t − r) (6.16)

Here h̄ij is the ”trace-reversed” perturbation:

h̄ij ≡ hij − 1

2
δij hkk , (6.17)

I ij is the ”second mass moment” of the source:

I ij(t) ≡
∫

d3x µ(t, ~x) x ix j , (6.18)

µ is the mass-density of the source, and the dot (̇) is ∂/∂t.
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Example: Binary Systems

Consider two stars of the same mass M in orbit of radius R
around their centre of mass, with a period P .
Order-of-magnitude estimate of GW amplitude:

I ∼ 2MR2

Ï ∼ 2MR2/P2

For circular motion

M

(2R)2
=

V 2

R
=

(2πR/P)2

R

So,

h̄ij ∼
(
M

r

)(
M

R

)
or h̄ij ∼

(
M

r

)(
M

P

)2/3

(6.19)
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Exercise 14

1 For a neutron-star binary (M ' 1.4M�) at 6 kpc with
P = 8 hr show that h ∼ 10−23.

2 What is the period when the system is about to merge
(Neutron stars have a radius of about 10 km)?

3 What is the gravitational wave amplitude at earth at
merger?
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Gravitational Radiation from Binary Stars

Let’s do the calculation in detail. From

M

(2R)2
=

V 2

R
=

(2πR/P)2

R

and Ω = 2π
P

we get

R =

(
M

4Ω2

)1/3

=

(
MP2

16π2

)1/3

First, check we are in the long wavelength, large distance limit.

λ ∼ 2π
Ω

, so R
λ
.
(

M
R?

)1/2

. And R? ≥ 2M , so this is satisfied.
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Gravitational Radiation from Binary Stars

For an equal mass binary, the position of one of the stars is

x(t) = R cos Ωt , y(t) = R sin Ωt , z(t) = 0

The second mass moment is

I xx = 2MR2 cos2 Ωt = MR2 [1 + cos(2Ωt)]

I xy = 2MR2 sin Ωt cos Ωt = MR2 sin(2Ωt)

I xx = 2MR2 sin2 Ωt = MR2 [1− cos(2Ωt)]

and all other components vanish.
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Gravitational Radiation from Binary Stars

Substituting into

h̄ij(t, ~x) =
2

r
Ï ij(t − r) (6.20)

gives

h̄ij = −8Ω2MR2

r

 cos(2Ωt) sin(2Ωt) 0
sin(2Ωt) − cos(2Ωt) 0

0 0 0

 (6.21)

Gravitational wave frequency is twice orbital frequency.
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Directional dependence

1 For an observer in the z-direction, the perturbation is
transverse-traceless. It constitutes two polarisations h+

and h× of equal amplitude but 90◦ out of phase.

2 For an observer in the x-direction, calculate
transverse-traceless perturbation by:

setting longitudinal terms to zero
subtracting off trace, to get

h̄ij = −4Ω2MR2

r

 0 0 0
0 − cos(2Ωt) 0
0 0 cos(2Ωt)

 (6.22)

One polarisation and half the amplitude.
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Energy Loss in Gravitational Waves

Motivate the equation for energy in gravitational waves from:

1 The argument that energy in gravitational waves should
be proportional to the amplitude h̄ij squared.

2 Luminosity (or power) is dimensionless (in geometric
units). Only the third time derivative of I ij is
dimensionless.

3 Luminosity is a scalar, so it can only depend on
...
I ij

...
I
ij

and (
...
I
k
k)2.

This leads to (we have not derived the numerical factors):

LGW =
1

5

G

c5
〈
...
I
ij ...
I ij〉 where I ij = I ij − 1

3
δij I kk

and 〈·〉 denotes average over a period.
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Energy loss from a binary

Using the previous expression for I ij , and recalling that
〈sin2 2Ωt〉 = 〈cos2 2Ωt〉 = 1

2
, we get

LGW =
128

5
M2R4Ω6

for an equal mass binary system.
Using Kepler’s law, and inserting G and c factors gives

LGW = 1.9× 1033

(
M

M�

1h

P

)10/3

erg/s (6.23)

For comparison, solar luminosity is L� = 3.9× 1033erg/s.
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Evolution of the orbit

The energy of a binary system, in Netwonian mechanics, is

E = KE + PE = 2

(
1

2
MV 2

)
− M2

2R2

= −M2

4R2
= −M

4

(
4πM

P

)2/3

Energy is negative (bound system), so radiating energy causes
orbit to shrink.
Rate of change of energy is dE

dt
= −LGW, giving

dP

dt
= −3.4× 10−12

(
M

M�

1h

P

)5/3

(6.24)
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Hulse Taylor Pulsar

Masses 1.4M�

Period 7.75 hours.

Orbit decreases by
∼ 10µs per year.

Observed decay
matches GR
prediction
(incorporating
ellipticity)
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Lectures 16-17: Gravitational Wave

Detectors [Maggiore Ch 9;

Creighton/Anderson Ch 6]
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Detector basics

How sensitive?

We have shown (Exercise 14) that the gravitational wave
strain from the Hulse-Taylor pulsar will be about
h ∼ 10−18 at merger.

But, we’d have to wait about 300 million years for this.

Alternatively, we could detect any merger in the galaxy.
These are expected to happen about once every 10, 000
years (as high as 1 per thousand, as low as 1 per million
years).

Instead, look for a mergers in a million galaxies. Galactic
density is about 0.01 Milky Way equivalent galaxies per
Mpc3. i.e. build a detector sensitive to binary mergers
out to ∼ 100 Mpc.

This requires a sensitivity of about h ∼ 10−23.
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Detector basics

A basic Michelson interferometer
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Detector basics

A basic Michelson interferometer

For a lossless mirror:

ET = tEI ER = rEI

|t|2 + |r |2 = 1

For light incident from the
other side, t ′ = t, r ′ = −r .

For the beam splitter, half of
the light passes through:

r = t =
1√
2
.

When the arms are equal
length, there is destructive in-
terference and no light is seen
in the photodiode. [The fact
that r ′ = −r explains why we
have destructive interference.]
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Detector basics

Estimate of sensitivity

Change in length ∆` = ∆`1 −∆`2. Measurable change in
length when ∆` ≈ λlaser.
Assume a kilometre scale detector, and λlaser ∼ 1µm. Then,
measurable GW strain:

h =
∆`

`
∼ λlaser

`
∼ 10−6m

103m
= 10−9

This is 14 orders of magnitude too large! This can be
overcome by using longer effective arms, better measurement
of ∆` and high laser power.
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Detector basics

Increasing the arm length

We can increase the effective arm length by making the light
travel up and down the arm numerous times. The longest
feasible is

`eff ∼ λGW = c/fGW

For ground based detectors, fGW = 100− 1000Hz⇒
`eff ∼ 1000km. This gets us to

h =
∆`

`eff

∼ λlaser

λGW

∼ 10−6m

106m
= 10−12
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Detector basics

Fabry Perot cavities

Comprised of two mirrors: one
partially transmissive, one fully
reflective:

EFP. = tITMEI − rITMEFP/

= tITMEI − rITMe−2ikLEFP.

This gives

EFP. =
tITM

1 + rITMe−2ikL
EI

At resonance, e−2ikL = −1 so

EFP. =
tITM

1− rITM
EI .

so if rITM is close to 1, can
build up a lot of power. Light
does (on average) 1

1−r2
ITM

round trips before coming
out.
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Detector basics

Response to a gravitational wave

For a simple Michelson interferometer,

1 At low frequencies, ∆t ∝ h`/c

2 The detector will be insensitive
to GW with ` = λGW.

In general, the response is proportional
to h` sinc(`/λGW).
More complicated for a Fabry-Perot
cavity as light undergoes varying num-
ber of round trips, but still lose sensi-
tivity at higher frequencies.

Dashed: Michelson
Solid: Fabry Perot.
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Detector basics

Improved measurement of the optical fringe

Can measure length changes much smaller than λlaser, what’s
the limit? Want to measure light intensity at the photodiode.
Random fluctuations in the number of observed photons are
∼ N

1/2
photons, can’t measure physical changes smaller than this,

i.e.

∆` ∼
N

1/2
photons

Nphotons

λlaser

We can only collect photons for a time about equal to the
period of the gravitational wave, i.e. τ ∼ 1/fGW. Total
number of photons collected depends upon GW frequency and
laser power:

Nphotons =
Plaser

hc/λlaser

τ ∼ Plaserλlaser

hc fGW
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Detector basics

Exercise 15

1 Using

Nphotons =
Plaser

hc/λlaser

τ ∼ Plaserλlaser

hc fGW

and taking

Plaser = 1W

λlaser = 1µm

fGW ∼ 300Hz

estimate the number of photons that can be collected.

2 What is the sensitivity h = δ`
`eff

that can be achieved?
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Detector basics

Higher laser power & signal recycling

We saw that with a 1W laser, can get a sensitivity h ∼ 10−20.
Can do better with higher laser power. Achieved in two ways:

1 Use a higher power input laser. Advanced LIGO uses
150W .

2 Use power recycling. When the interferometer arms are
equal length, there is no signal at the photodiode — it all
goes back out towards the input. Simply reflect this back
into the detector to build up laser power

In a similar way, can use signal recycling. Reflect the signal
that comes out of the interferometer back into the detector.
This can improve the sensitivity of the detector.
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Detector basics

The advanced LIGO detector
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Detector basics

The LIGO Hanford Observatory

16

LIGO Hanford Observatory
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Noise sources

Limits to detector sensitivity

We have argued that it’s possible, in principle, to make a
gravitational wave detector that is as sensitive as required.
Let’s look now at some of the sources of noise that limit the
sensitivity. We will discuss

Quantum noise: shot noise and radiation pressure.

Thermal noise

Seismic noise

Characterize sensitivity using the noise spectral density

1

2
Sh(f ) = 〈|ñ(f )|2〉∆f

or amplitude strain sensitivity S
1/2
h (f ).
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Noise sources

LIGO-Hanford Detector Noise Spectrum, 2007
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Noise sources

Shot noise

Shot noise is simply the photon counting noise we met before.

∆`

`
∼ λlaser

`N
1/2
photons

=
1

`

√
hcλlaser

Pτ

Detailed calculation for a Michelson interferometer gives (see
Maggiore):

S
1/2
shot(f ) =

λlaser

4πL

(
2~ωlaser

P

)1/2

Notes:

1 This is frequency independent, but for a realistic
(Fabry–Perot) interferometer, need to account for
detector response.

2 Higher power reduces shot noise.
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Noise sources

Radiation Pressure

Can’t increase laser power indefinitely without repercussions.

Photons bouncing off mirrors impart momentum, moving
the mirrors stochastically.
More power −→ more photons −→ more radiation
pressure noise.

Momentum transfer to mirror due to reflection of a photon is
2|p|, and energy is Eγ = |p|/c so, force due to wave with
power P is

F = 2P/c .

Fluctuations in time τ are

∆F = 2

√
~ωlaserP

c2τ

Higher power leads to greater variation in force.
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Noise sources

Radiation Pressure

Spectrum of radiation pressure force:

F (f ) = 2

√
2π~Pin

cλ
.

Corresponding motion of each mirror (from F = ma):

x(f ) =
F (f )

m(2πf )2
.

The power spectrum of the fractional relative length change
from the sum of the 2 arms is then

S
1/2
rad (f ) =

4

ML(2πf )2

√
2~ωlaserP

c2

Want lowest laser power to reduce radiation pressure noise.
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Noise sources

The standard quantum limit

Shot noise decreases with laser
power, while radiation pressure in-
creases with laser power.
At any given frequency f = f0
the sum Sshot + Srad is minimized
by choosing the power P to make
Sshot = Srad. The total noise is then

S
1/2
SQL =

1

2πfL

√
8~
M
.

This minimum noise level is called
the standard quantum limit.

Radiation pressure and
shot noise contributions
for different values of f0.
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Seismic Noise

Seismic noise is due to shaking of the ground, due to
earthquakes, weather, human activity, etc. It affects the
interferometer by shaking the optical components.
If the mirrors were resting on the ground, the seismic noise
would be

S
1/2
seis ∼ 10−12Hz−1/2

(
10Hz

f

)2

for f > 10Hz

This is many orders of magnitude larger than the gravitational
wave signal we are trying to measure. Need to suppress the
effect of seismic motion on the motion of the mirrors: suspend
them as pendular.
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Seismic Noise

Mirrors are suspended as pendula (simple harmonic oscillators).
If X is the position of the pivot point, x is the position of the
mirror and ` is the length of the pendulum, then

`
d2x

dt2
= −g(x − X )

Taking Fourier transform:

−4π2f 2`x̃ = −g(x̃ − X̃ )

We can rewrite this as

x̃(f ) = A(f )X̃ (f ) where A(f ) =
1

1− (f /fpend)2

and fpend =
1

2π

√
g

`
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Seismic Isolation

For f > fpend,

x̃(f ) ≈ − (fpend/f )2 X̃ (f )

so seismic noise is suppressed.
Increase isolation from ground by
“stacking”. e.g. Advanced LIGO uses
a quadruple pendulum.
LIGO also uses active isolation: sen-
sors monitor motion of suspension sys-
tem; control motors that push back on
system to cancel ground motion.
Can get required sensitivity, but not
easy, especially at low frequencies.

Advanced LIGO
suspension.
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Thermal noise

Equipartition Theorem: each degree of freedom of a system
in thermodynamic equilibrium at temperature T should have
an energy whose expectation value is 1

2
kBT .

Main physical manifestations of thermal noise:

Random motion of atoms in mirrors.

Vibration in wire suspensions of mirrors (“violin modes”).

Swinging of the mirror pendula.

Induces random “jittering” of positions of mirrors.

E.g., m = 10kg mirror suspended from a ` = 1m wire:

∆Lrms '

√
kBT `

mg
' 6× 10−12m .
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Fluctuation-Dissipation Theorem

For a linear system subject to a force Fext, can always write
the equation of motion as

Y (f )F̃ext(f ) = 2πif x̃(f ) = ṽ(f )

Where Y is the admittance of the system.
Then, the power spectrum of thermal fluctuations in
equilibrium at temperature T is given by

Stherm(f ) =
4kBT

(2πf )2
|Re [Y (f )] |.

This applies to any linear system in thermodynamic
equilibrium.
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Exercise 16

Consider a harmonic oscillator with mass m, spring constant k ,
and dissipative force −bv :

Fext = mẍ + bẋ + kx ,

The resonant frequency is f0 = 1
2π

√
k
m

.

1 Show that the equation of motion can be written as

F̃ext(f ) = −4π2m(f 2 − f 2
0 )x̃(f ) + b(2πif )x̃(f )

2 From this, show that the admittance Y is

Y (f ) =
2πif

2πibf − 4π2m(f 2 − f 2
0 )

=
f 2b − 2πifm(f 2 − f 2

0 )

b2f 2 + (2πm)2[f 2 − f 2
0 ]2



181/183

PX4224: Advanced General Relativity and Gravitational Waves

Lectures 16-17: Gravitational Wave Detectors [Maggiore Ch 9; Creighton/Anderson Ch 6]

Noise sources

Fluctuation-Dissipation Theorem

For this example

Stherm(f ) =
kBT

π2

b

b2f 2 + (2πm)2[f 2 − f 2
0 ]2

.

Total noise power (or
RMS displacement)
does not depend on
the magnitude b of
the dissipation, but
the shape of the
power spectrum does
depend on b.
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Fluctuation-Dissipation Theorem

Can minimize impact by making dissipation (b) small.
Concentrates noise power at resonant frequency f0.

Suspend mirrors as pendulums (low b, resonant frequency
∼ 1Hz – well below observation band).

Use high-quality-factor wires for suspensions, so
vibrational motion of “violin modes” is concentrated in
narrow frequency range.

Minimize the thermal noise from internal vibrations of the
mirrors by making them from material with very low
dissipation at acoustic frequencies at room temperature
(fused silica).
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The advanced LIGO noise budget
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