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The Strong Principle of Equivalence

m Strong Principle of Equivalence: In an arbitrary
gravitational field, at any given spacetime point, we can
choose a locally inertial reference frame such that, in a
sufficiently small region surrounding that point, all
physical laws take the same form they would take in
absence of gravity, namely the form prescribed by Special
Relativity.

m Nature has no preferred coordinate system = we need
to be able to write physical laws in a form that is
valid in any coordinate system.
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Coordinates

m We must abandon global inertial coordinates (e.g.,
(t,x,y, z) in flat spacetime): they do not exist for a
general curved spacetime. Inertial coordinates exist only
locally.

m Axiom used by Gauss for non-Euclidean geometries:
At any given point in space, there exist a locally
Euclidean reference frame such that, in a sufficiently
small region surrounding that point, the distance between
two points is given by the law of Pythagoras.

m One needs, therefore, to consider general curvilinear
coordinates x©.
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Line element

m Line element in a local inertial frame: ds? = 1, d¢*d¢”,
where 1,3 = diag(—1,1,1,1) is the flat space metric.

m Switch to a generic frame where coordinates are labelled
x*(£%). The curved spacetime line element is

d52 — naﬂ%dxugg dx¥ = gﬂy(x)dXMdXV (11)

m The spacetime metric components g, are symmetric
with respect to interchange of o and 5. How many
independent components do we have in spacetime?
Answer: 10
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Local Inertial Frames

m Inertial reference frames exist only locally. Given any
event P in spacetime, it is always possible to find
coordinates local inertial coordinates £* such that

98a
P

(Hint: higher-order derivatives will play a role later.)

m Local flatness is a consequence of the equivalence
principle (a freely falling observer should be in a local
inertial frame).
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Light Cones & World Lines

m General relativity inherits locally the light cone structure
of special relativity

m Points separated from P by infinitesimal coordinate
intervals dx® can be
timelike separated from P (ds? < 0)
null separated from P (ds? = 0)
spacelike separated from P (ds? > 0)

m Light still travels along null world lines, but such lines are
no longer necessarily at 45° in a spacetime diagram.

m Particles move along timelike world lines
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Vectors in Curved Spacetime

m They are defined locally as tangents to curves passing
through an event P; i.e., they are defined in the tangent
space at P.

m Vectors at different points “live” in different tangent
spaces and are not directly comparable (a(P) +b(Q) =7?).
m Forget position vectors: they are not defined locally.

m Displacements dx® = x5 — xg between infinitesimally
separated points P and @ are still vectors.

If we restrict to locally defined vectors, most SR machinery
carries over to curved space with 7,3 — g.3; €.g., the inner
product of two vectors is defined as a - b = g,za“b®
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Bases

A vector at a point can be decomposed in terms of a set of
basis vectors. There are two types of bases we will consider:

(i) A coordinate basis, denoted {e,}. Pick e, as the
tangent vector pointing along the x* coordinate axis:

(e,)? = 0” (in x coordinates) . (1.3)

The coordinate basis vectors are not necessarily unit
vectors or orthogonal to one another:

e, 65 = gozﬁ . (14)

A coordinate basis is used for most calculations.
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Bases

(i) An orthonormal basis, denoted {e;}. Since spacetime
is locally flat, we can always choose coordinates x’ near
an event P so that g,s(Xx’) — 7ap:

ds? = 1op dx'“dx’” . (1.5)

Choose {es} as the coordinate basis vectors in this
special coordinate system:

(es)’ = 5§ (in X’ coordinates) . (1.6)
By construction, the {es} form an orthonormal set:
e, - e; =1, = diag(—1,1,1,1) (1.7)

An orthonormal basis is useful for interpreting
measurements done by observers in spacetime.
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Hypersurfaces

A 3-dimensional hypersurface in spacetime is defined by a
condition f(x®) = 0. Examples:

t —to =0 (i.e.,, a t = const surface)

—t2+r?2+a%> =0 (i.e., a Lorentz hyperboloid in flat
spacetime)

Often useful to split a region of spacetime into a “stack”
(foliation) of 3D hypersurfaces.

m Each sheet can be considered a surface of constant time
in some coordinate system.

m How we define simultaneity in GR.

m Different families of hypersurfaces — different choices of
time coordinate.
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Hypersurfaces

m Tangent vectors t to a hypersurface f(x®) = 0 satisfy
o df
dx®

m The normal vector n® is defined by

~0. (1.8)

O=n-t=gypnt’ (1.9)

for any tangent vector (there are 3 independent ones).

m A 3-d hypersurface is said to be spacelike if n- n < 0.
m A 3-d hypersurface is said to be timelike if n-n > 0.
m A 3-d hypersurface is said to be null if n-n = 0.

m The 3-d line element on a 3-d hypersurface is obtained by
restricting the 4-d line element to the surface.
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Geodesics

m Free particles in curved spacetime move along geodesics,
which are paths that extremise the proper time, 7:

B ! dx# dx¥
H frng — — P
S[x*(0)] _/A dr /0 doy/—gu i do (1.10)

m The geodesic equations in a general curved spacetime are
the Euler-Lagrange equations for the Lagrangian

w oy dx(o) \  dr \/ dxe dx?
‘ (X () T"’) i e

(1.11)
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Geodesics

m The geodesic equation is:

d?x® dx? dx7
[%, —— =0 1.12
dr? Y dr dt ( )

where

1 0 0 0
raﬁ'y: - a,u( 8us + 8y gﬁV)

28 -

ox7 oxP OxH (1.13)

are the Christoffel symbols, and g? are the components
of the inverse matrix to g,z3.

m Note that [“g, =%

m How many independent Christoffel symbols are there?
Answer: 40 in 4-d; 18 in 3-d; 6 in in 2-d.
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Null & Spacelike Geodesics

m Because d72 = —ds? = 0 along any null curve, one
cannot use proper time as a parameter along light rays

m However, it can be shown that one can always choose an
affine parameter A such that the same form of Eq. (1.12)
holds for null geodesics:

d?x® dx? dx”

o, &I 1.14
oz Pl a0 (1.14)

m For spacelike geodesics we can use the same equation
again with the proper length ¢ as the parameter.
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Exercise 1

The line-element of the unit 2-sphere is

ds®> = d6? + sin® 0d¢?

(a) Calculate the Christoffel symbols associated to this metric.
Since it's two dimensional, there are only six.

(b) A particle is moving along the equator. What are its initial
position x“ and velocity < dX 7

(c) Usmg the geodesic equatlon show that the acceleration

ddX vanishes. What does this tell you?

(d) What measurements could you make to demonstrate the
this surface is curved?
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What are Gravitational Waves?

m Mass produces spacetime curvature.

m Special relativity imposes a finite speed limit (¢) for any
type of communication.

m Mass in motion produces ripples in spacetime curvature
that propagate at the speed of light: gravitational waves.

m Gravitational waves carry significant amounts of energy.
However, due to the weakness of the gravitational
interaction, they are not easily detected.

For the time being, we assume the existence of gravitational
waves in general relativity and study their properties. We will
learn how they arise later in the course.
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Properties of Gravitational Waves

m They travel at the speed of light (¢)

m They are transverse to the propagation direction

m They have two independent polarisation states (+ and x)
m They carry energy away from a radiating system

m They can be detected by their effects on freely-falling test
particles
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LLinearized gravitational wave

A Linearized Gravitational Wave

Simplest example: a ripple in the curvature of space-time
propagating in one direction, independent of the other two:

m direction of propagation (z) is longitudinal direction
m other two directions (x and y) are transverse

m it is a plane wave

We assume that the geometry is close to flat and treat the
gravitational wave as a perturbation, so

Bap = Tap + ha,B (21)
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LLinearized gravitational wave

A Linearized Gravitational Wave

m A simple example of gravitational wave propagating along

zZis:
00 0 O
01 0 O
haﬁ(t,z) = 00 -1 0 f(t—2z). (2.2)
00 0 O

where we require |f(t — z)| < 1.

m Typical amplitudes |f(t — z)| < 1072 Linearized
approximation is fine: we are ignoring terms of size 10~%°!
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LLinearized gravitational wave

A Linearized Gravitational Wave

The line element for the spacetime is

ds?> = —dt® + [1+ f(t — 2)] dx* + [1 — f(t — 2)] dy® + dzZ°
(2.3)
f(t — z) encodes the size and shape of the gravitational wave.
Note that f and h,s are dimensionless.

Examples:
f(t — z) = asin[w(t — z)] is a gravitational wave of
amplitude a and frequency w.
f(t — z) = bexp[—(t — 2)?/20?] is a Gaussian wave
packet with width ¢ and amplitude b.
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LLinearized gravitational wave

Detecting Gravitational Waves

m Spacetime curvature is detectable through the motion of
test bodies, i.e., ones that move along geodesics and
produce no significant spacetime perturbation.

m Curvature detection requires monitoring the relative
motion of at least two test bodies.

m Let's examine the motion of two bodies, initially at rest,
as a gravitational wave passes. We need to examine both
their co-ordinate motion and their proper distance.
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LLinearized gravitational wave

Exercise 2

Consider two particles A and B at positions (0,0, 0) and
(xs, ys, zg) initially at rest.
(a) What are their initial 4-velocities?

(b) Use the geodesic equation to determine the evolution of
the co-ordinate positions of the particles when a
gravitational wave of the form

ds? = —dt? +-[1 + f(t — 2)] dx® +[1 — f(t — 2)] dy* + dz*

passes.

(c) Now, consider particle B at (L,,0,0). What happens to
the proper distance between the particles as the
gravitational wave passes.



PX4224: Advanced General Relativity and Gravitational Waves
L Lectures 2 - 4: Gravitational Waves [Hartle, Ch. 16]

LLinearized gravitational wave

Distances Do Change

m The fractional change in distance 0L is

oL(t)  L(t)—L. 1 1
LT L~ 5f(t) = —hu(t)

m For a gravitational wave of amplitude a and angular
frequency w, we obtain
oL(t) a

. Esin(wt).

The fractional distance oscillates with half the amplitude
and the same frequency of the gravitational wave.
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LLinearized gravitational wave

Distances Do Change

m For a particle at (0, L,,0), we have

oL(e) 1., 1
L= 5 ()= 5h(1)

m More generally, for a particle at distance L, from the
origin, in direction A’ in the z=0 plane,

oL(t) 1 i i
L* = Ehu(t)n i
[ ML(*t) is the fractional strain produced by the gravitational

wave.
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A Ring of Particles

Now, consider a perturbation

—dt? +[1+ f(t — 2)] dx?

ds? =
+[1 = f(t — 2)] dy?* + dz?

and a ring of particles 7= L,(cos#,sin8,0).
Then,

L 1 1
i L(t) = —f(t)(cos? @ — sin? ) = Ef(t) cos 26
This is an ellipse with semi-major/minor axis

L(1=£31£(1))).

3n/2

n/2

O @“5636)
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L Gravitational Wave polarisations

A Second Polarisation

So far, we considered only a single gravitational wave
polarisation:

has(t, z) = flt—z), |[ft—2)|<1.

o O O o
o O+~ O
o | o

—
o O oo

(2.4)
This is not the most general possible form of a gravitational
wave travelling in the z-direction. This can by shown by
considering a change of co-ordinates.



PX4224: Advanced General Relativity and Gravitational Waves
L Lectures 2 - 4: Gravitational Waves [Hartle, Ch. 16]

L Gravitational Wave polarisations

Exercise 3

Starting from the perturbed metric:
ds? = —dt® + [1+ f(t — 2)] dx* + [L — f(t — z)] dy® + dZ*
consider a change of variables to x’, y’ given by
]‘ / / 1 / /
X =—(X + =— — X
\/5( Y) vy \/E(y )

and derive the metric in these co-ordinates and the form of
hogs.
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L Gravitational Wave polarisations

Two Polarisations

The general solution for a GW propagating in the z direction is

00 0 O 0 00O
01 0 O 0010
has(t.2)=1 g 0 _1 0 |™ Tl o100 |
00 0 O 0000
l‘plusl! l‘crossIl
polarisation polarisation
(2.5)

where h,(t — z) and hy(t — z) are arbitrary functions.

[We have not proved this, but it is not difficult.]
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L Gravitational Wave polarisations

The Effect of Gravitational Waves

Gravitational waves are deformations of space itself that
stretch it first in one direction, then in the perpendicular one.

an
Yot
ot

“ » \ i
Plus i |
polarization TN

“Cross” 4
polarization 7

X
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Detecting Gravitational Waves: Interferometers

A laser interferometer is shaped like an L to take advantage of
the quadrupolar deformations produced by a passing
gravitational wave.

As a wave passes, the
arm lengths change in
different ways ...

Recycling
mirror

... causing the
interference patter at
the photodiode to
change.
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Interferometer Basics

m We have seen that a plus polarised wave propagating in
the z-direction will cause an alternate expansion and
contraction of distances in the x and y directions.

m A difference in length of the two arms will lead to an
interference pattern:

Constructive interference when
AL:L(X)—L(y):n)\, n:0,1,2,...

Destructive interference when

1
Al = <n+2> A, n=0,1,2,...

m A path length difference will manifest as an interference
pattern at the output photodiode.
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Effect of Gravitational Waves

m A passing gravitational wave will change the lengths of
the arms and cause an interference pattern to be formed
at the detector output.

m Taking a + polarised gravitational wave propagating in
the z-direction,

oLy 1 oL 1
— = 4 Zasin(wt) =2 = —Zasin(wt 2.6
[ = hpesin(n) = pasi(e)  (26)

m The amplitude and frequency can be inferred from the
observed interference pattern.

m Since the change in length is proportional to the length, a
longer interferometer will be more sensitive
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Gravitational Wave Detectors

The above is a simplified discussion of gravitational wave
detectors. More details will follow later in the course. In
particular:

m When the arm lengths are equal there is actually
destructive interference. This is due to phase changes of
the light when it is reflected by the mirrors.

m We have not discussed the additional mirrors used to build
up power in the arms and increase detector sensitivity.

m We have not discussed noise sources and detector
sensitivity.
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Gravitational Wave Detectors

Several kilometer-scale interferometers have operated since
2005, alternating periods of observing and upgrades:
m Two LIGO detectors in the US: Livingston, LA & Hanford,
WA (4 km arms). Made the 1* detection in Sept. 2015.
m The Virgo detector in Pisa, Italy (with 3 km arms).
Observed with LIGO during August 2017 and participated
in two detections.
m The GEO-600 detector in Hannover, Germany (with
600 m arms). Primarily a technology development
platform, also participated in observing up to 2010.
LIGO and Virgo have a sensitivity about

SL/L < 10722
6L < 107*°m ~ 1/1000 the diameter of a proton.
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Gravitational Wave Detectors

The detections made so far are all mergers of black holes
(BBH) or neutron stars (BNS). They include:

m GW150914: BBH, total mass 65 M. HL
m GW151226: BBH, total mass 22 M. HL
m GW170104: BBH, total mass 51 M. HL
m GW170608: BBH, total mass 19 M. HL
m GW170814: BBH, total mass 55 M. HLV
[

GW170817: BNS, EM counterpart observed in gamma,
X, optical, IR, radio bands. HLV

KAGRA a new underground detector in Japan will be online in
2019-2020. LIGO-India is currently selecting its site, might be
observing by 2025.
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LEnergy in Gravitational Waves

Energy in General Relativity

m The energy density in Newtonian gravity is

1 2
exew = — 5= (V0] 27)

m One might try to generalise the above by replacing V&(x)
by derivatives of the metric. But, physical quantities in
GR cannot depend upon the choice of co-ordinates, and
we can choose co-ordinates where they vanish.

m There is no local notion of energy in a gravitational field
in general relativity (in contrast to Newtonian gravity).

m This absence is part of the profound shift in viewpoint
from gravity as a force field operating in spacetime to
gravity as spacetime.
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Energy in Gravitational Waves

m We can associate energy to an entire spacetime when it is
asymptotically flat, e.g. black hole masses.

m We can obtain an approximate expression, when the
wavelength of the waves is much smaller than the scale of
curvature. This energy is an average energy density over
spacetime volumes the dimensions of which are larger
than the wavelength but much smaller than the
background curvature scale.
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Energy in Gravitational Waves

We can get an answer based on simple arguments. Consider
the waveform f(t — z) = asin(w(t — z)). Then:

m Assume that energy density is proportional to the
amplitude squared, € o< a* (as for other waves).

m The units of energy density are ML™1T 2,
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LEnergy in Gravitational Waves

Exercise 4

(a) The units of energy density are ML= T 2.

(b) What (unique) combination of w, G and c¢ has the same
dimensions as energy density?
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Energy in Gravitational Waves

We can get an answer based on simple arguments. Consider
the waveform f(t — z) = asin(w(t — z)). Then:
m Assume that energy density is proportional to the
amplitude squared, € o< a* (as for other waves).
m The units of energy density is ML= T2, The only way to
obtain these dimensions is with € oc <£~.
m The energy density of a gravitational wave with amplitude

a and angular frequency w is

cw?a?
€ =
W 3G
m Their speed is ¢, so their energy flux is
3,,2.2

P _ Cwa
GW — €cwC = 397G
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LEnergy in Gravitational Waves

Exercise 5

(a) For a typical gravitational wave that advanced LIGO aims
to detect, a ~ 10722 and the frequency f ~ 200Hz.
Substitute these into the expression:

c3w?a?
Fr —
W 300G

to calculate the typical energy flux of a gravitational wave.
(b) What would the luminosity of the source (assuming
uniform emission) be if it were at:
i The galactic centre (=~ 10kpc)
i The Virgo cluster (=~ 10Mpc)
iii The Coma supercluster (=~ 100Mpc)
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Towards the Einstein Equation

The Einstein Equation is a set of differential equations for the
metric; Schwarzschild metric, Kerr metric, gravitational waves,
etc. are possible solutions.

Studying this equation requires three final mathematical
concepts:

m A more rigorous definition of vectors in terms of
directional derivatives.

m Tensors: generalizations of vectors. Physically
measurable quantities in GR are tensors (e.g., metric,
curvature).

m Covariant derivative: how we take derivatives of tensors
(for making differential equations).
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Vectors

m We defined a vector as a tangent to a curve x* = x*(0)
at a point (event) P. The vector t has components

d 07
= (3.1)

@,

with respect to a coordinate basis {e,} associated with

XO(

m A vector defined this way is sometimes called a tangent
vector.
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Vectors as directional derivatives

We can also consider t as a directional derivative operator.

m Consider a function f = f(x®) and a curve x*(o).

m The directional derivative along the curve, at the point

labelled by o is
df . [f(x*(oc+¢€)) = f(x*(0))| _ dx* Of
do 11'8 € "~ do Ox@ (3-2)
m The vector t with coordinate basis components
dx®
t* = — 3.3
o (3.3)

is a tangent vector to the curve.
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Directional Derivatives

m The directional derivative at o is specified by t and we
can write
d 0

=t . (3.4)

do ox«
m There is a one to one correspondence between vectors
and directional derivatives:

a=a" (3.5)
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Directional Derivatives

m We could have used this definition in flat space. Given a
directional derivative, we can use it to construct a
directed line segment. But, we do not need to!

m On the other hand, directed line segments do not work in
curved space. Directional derivatives do.

m We can just work with directional derivatives. Usual
vector algebra works. Simply think of

0

T oxe

e, (3.6)

as a coordinate basis.

m From now on, think of vectors as directional derivatives.
The linear space of directional derivatives is the tangent
space mentioned before.
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Example: Change of Co-ordinates

How do the components of a vector a change under a
co-ordinate transformation x® — x"*(x?)?

m We can calculate
0 ox® 0
Ox*  Ox® OxP
m Use this to calculate the components of a
18
a=a aia = gia affﬂ =" affﬁ

m So we obtain

18 a
a? = (8x )ao‘ and a% = (ax )a"B (3.7)

Ox® Ox'B




PX4224: Advanced General Relativity and Gravitational Waves
L Lectures 5 - 7: “A Little More Math” [Hartle, Ch. 20]
L Vectors

Example: Cartesian and Plane Polar Coordinates

m Consider 2-d flat space in either Cartesian x* = (x,y) or
polar coordinates x'® = (r, ¢).

m Transformation equations x'* = x"*(x?):
r=+/x>+y?, ¢ =arctan(y/x)

m Inverse transformation equations x* = x®(x'*):

X=rcos¢, y=rsing
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L Vectors

Example: Cartesian and Plane Polar Coordinates

m Transformation matrix:

o] o) .
ox'™ 5% oy cos¢ sing
= __sing cos¢

= % & |=
aXﬂ Ox dy r r

m Inverse transformation matrix:

Ox® O 3—; B < cos ¢ —rsin¢)

oxs ¥ g—f; sing rcos¢

m We can express the polar coordinate basis vectors as

e, = cospe,+singe,
e, = —rsinge,+rcosgpe,
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Dual Vectors

m Dual vectors (or co-vectors or one-forms) are defined as
linear mappings from the space of vectors V' at a point P
to the real numbers —i.e., w : V — R satisfying:

w(a+b) =w(a) + w(b), ¥ a,b.
w(ea) = aw(a), Va € R and V a.

m Using linearity, and assuming zero maps to zero, one can
write
w(a) = w(a%e,) = a%w(e,) = a°w, (3.8)

where w, := w(e,) are defined to be the components of
the dual vector w with respect to the x* coordinate basis.
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The Gradient as a Dual Vector

m The derivative of a function in the direction specified by a

vector t is
df o of

m The derivatives of f(x®) specify a map from any vector t
to real numbers:

d of
Vof =df [ — | = t"=— 1
of =d (do) C o (310)

m Therefore, the gradient of a function, V£, is a dual
vector with components

(V). = (3.11)

T oxe
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Basis of Dual Vectors

m We can introduce a set of linearly independent dual
vectors e, and write any dual vector as cotangent space

w = w,e"

m The numbers w, are the components of the dual vector in
the basis e”.

m It is most convenient to work with a dual basis that
satisfies
e“(es) = 03 (3.12)

i.e., the coordinate basis vectors and dual basis vectors
are dual to one another.
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Example: Change of Co-ordinates

How do the components of a dual vector w change under a
co-ordinate transformation x® — x"*(x?)?

m We know the w(a) is independent of the choice of
co-ordinates so, using (3.7)

w(@) =w,a” = wha”

(KN
= <o)

m Therefore, the components of a dual vector transform as

, oxP ox"P\
wl, = (Gx’a> wg and w, = (axa) wys  (3.13)
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LCorrespondence Between Vectors and Dual Vectors

|dentifying Vectors and Dual Vectors

m The metric g,z allows one to identify vectors with dual
vectors and vice-versa.

m For a fixed vector a the inner product defines a map from
vectors b to real numbers as

a(b) =a-b = g,za"b’ (3.14)
m Hence,
ag = gagaa (3.15)

are the components of a dual vector associated with a.

m This gives a correspondence between the vector with
components a* and the dual vector with components a,,.
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LCorrespondence Between Vectors and Dual Vectors

|dentifying Vectors and Dual Vectors

m To transform a dual vector to a vector, we require the
inverse of the metric, defined by

gY8gys = 03 (3.16)

m Then, given the components ws of a dual vector, one can
associate a vector with components

w® = gPug (3.17)

m The correspondence between a vector and dual vector via
a0 ‘= gapa’ is called lowering of an index with the
metric.

m The correspondence between a dual vector and vector via
a“ := g*¥ag is called raising of an index with the
metric.
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LCorrespondence Between Vectors and Dual Vectors

Exercise 6

Consider the two dimensional metric

F 1
8271 0

and the vectors (or dual vectors)
2. =(1,0) by =(0,1) ¢ =(1,0) d*=(0,1)

Calculate
| g’
B a-aandc-c
Ba-bandc-d
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LCorrespondence Between Vectors and Dual Vectors

Example: Normal and Tangent Vectors

An example of the correspondence is the association of a
normal vector n with the (dual vector) gradient of a function
f(x*) = const defining a 3-d surface in spacetime—i.e.,

of
OxP

Note that for any vector t tangent to the surface

no — gocﬁ

of of
t-n=gt°n’ = g t%gH— =t"—— =0
N = gapt®n” = gastg oL = 105 o
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Tensors

m Tensors are a generalization of vectors & dual
vectors.

m We defined a dual vector as a linear mapping from the
space of vectors V' at point P to R.

m We could equally consider a linear map from a pair of
vectors at P to R. We already met an of this:

g(a,b) =a-b = g,za*b’ (3.18)

m The general notion is called a tensor.
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Tensors

A tensor of rank r is a linear map from r vectors to R.

m A scalar is a tensor of rank 0.
m A dual vector is a tensor of rank 1.
m The metric is a tensor of rank 2.

m A third rank tensor t is a linear map from 3 vectors to R,
for example
t(a,b, c) = t,5"a"b’c, (3.19)

We might consider maps from n vectors and m dual vectors to
R, but since we have learnt how to associate vectors and dual
vectors, this is not needed.
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Operations on Tensors (and Examples)

m Raising and lowering of indices with the metric:

a® 1= g*%ag converts a dual vector to a vector.
We can raise both indices on a rank 2 tensor:
B . — gavgﬁét’vw

= Summing over a pair of indices (or “contracting”):
lowers the rank of a tensor by two: t,,s is a rank 2
tensor made from a rank 4 tensor t* 3.

m Product of two tensors: t*% = a®b? are the
components of a rank 2 tensor constructed from two rank

1 tensors a and b.
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Coordinate Transformations

The action of tensors on vectors is invariant under coordinate
transformations, we can work out how the components of a
tensor change (just like we did for dual vectors).

Example: metric

, Ox* Ox
Eap = B Ox'™ Ox'B

General expression

Ox'® Ox'® ox* Ox°
laf... ... A
T/oh = T (axu — > (_ava — ) . (3.21)

(3.20)
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L Tensors

Exercise 7

Starting from the 2-d cartesian metric,
ds®> = dx® + dy?,

make use of the transformation rules for the metric g, 3, to
calculate the metric in polar coordinates (r, ¢).
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Coordinate Transformations

m If the components of a tensor vanish with respect to one
basis, they vanish with respect to any other basis.

m If you can show the equality of the components of two
tensors in one basis, then the two tensors are equal.
Choose coordinate systems to make your life easy!

m Not everything we have worked with is a tensor! Most
importantly, coordinates x“ and the Christoffel symbols
[“3, are not tensors.
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So What is the Point of Tensors?

m A physical law written as a tensor equation is valid
in all coordinate systems — it is invariant. E.g.: The
Einstein equation is

1
R — 58uwR = 81T, . (3.22)

It takes this same form in any choice of coordinates.
m If we write laws using tensors, they will automatically

obey the principle of relativity in all frames (not just
locally inertial ones).



PX4224: Advanced General Relativity and Gravitational Waves
L Lectures 5 - 7: “A Little More Math” [Hartle, Ch. 20]

L Covariant Derivative

Covariant Differentiation

m We have seen earlier that the partial derivative of a
function f is a dual vector Vf with components

of

af = 7 -
v ox«

(3.23)

m It would be useful to have a similar definition for a vector,
i.e. we would like to be able to take the derivative of a
vector Vv and get a rank 2 tensor.

m Similarly for tensors of other ranks.

m This would give us a definition of differentiation which is
co-ordinate independent.
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L Covariant Derivative

Parallel Transport

m To compute the derivative of a vector, we need to
subtract the vector evaluated at nearby space-time points.

m But, vectors at different points live in different tangent
spaces = we cannot subtract them directly.

m We must find a way to transport vectors from one point
to another.

m In flat space, we would simply do this by keeping the
co-ordinate components constant as we move the vector.
This is called parallel transport.

m We can generalise this to curved space by working in a
local inertial frame.
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L Covariant Derivative

Parallel Transport and Covariant Differentiation

Covariant derivative of a vector field

V(Xa T Eta)” transport to x® — V(Xa)

Vev(x?) = l'_% ; (3.24)
The way to evaluate this, work in a local inertial frame:
0 ov®
(Vor =2 o var =2 (L) (3.25)

0xB OxB
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L Covariant Derivative

Covariant Differentiation

m In an arbitrary coordinate system, we have to take into
account the change in the basis vectors as we move from
point to point.

m To see why, note that g%z of the non-constant radial
vector field v'(r,¢) =1, v®(r,$) = 0 is zero!

m Although the components of v are constant, the basis
vectors in polar coordinates change from point to point.

m When we parallel transport a vector field, the components
of the vector field can change proportionally to

the components of the vector v¢
the displacement dx®

= vﬁ(xé) = vO(x° + dx®) 4 T, (x° )V (x*)dx?(x°)
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Covariant Differentiation

m We now want to determine the coefficients fo‘m

m We can do this by considering geodesics. The unit
tangent to a curve u must be unchanged under parallel
propagation, i.e.

(Vou)* = i (giﬁ + ngm) =0 (3.26)

m But, we already know that u satisfies the geodesic
equation.

m From this, it follows that ng = gv‘
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L Covariant Derivative

Covariant Differentiation

Covariant derivative

a o
Vov® = =5 + T3, (3.27)

where 'G are the Christoffel symbols.

Geodesic equation

We can also rewrite the geodesic equation as:
A geodesic is a curve which satisfies

Vou=0 (3.28)
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L Covariant Derivative

Covariant Derivative of Dual Vectors

We can easily derive this from what we know:

m The covariant derivative of a scalar field ¢ is just the
ordinary partial derivative:

Vo6~
m The covariant derivative obeys the product rule, e.g.
Va(wsv?) = (Vawp)V? 4 ws(Vav?) (3.29)
m This gives
Vawg = % — 30wy (3.30)

Note the minus sign in front of the Christoffel symbol.
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L Covariant Derivative

Covariant Derivative of Tensors

General case:

peo 0 poo
Va (T)lfa ) = aXO‘ (TS\LLJ )

(T T )
- (rfa Th 0, The + .. ) .(3.31)

Covariant derivative = partial derivative + (1 ' term for each
raised index) — (1 I term for each lowered index).
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L Covariant Derivative

Covariant Derivative of the Metric

m [ he covariant derivative of the metric is:

agaﬁ .

vﬂgaﬁ = aXM ryaugyﬁ - rygugay (332)
m In a local inertial coordinate system, %gx"‘f =0, so
a5 =0 and
V,8ap =0. (3.33)

m But since V,g,3 = 0 is a valid tensor equation, it holds
in all coordinate systems.
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L Covariant Derivative

Exercise 8

Show that V,g,5 = 0.
To do this, you will need to make use of the explicit form of
the Christoffel symbols:

1 14e2 14 «
Mo = ~g" <8g 1 %8 08 5) (3.34)

2 OxP Ox« Oxv
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Lectures 8-10 : Curvature and the
Einstein Equation [Hartle, Ch. 21]
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LIntroduction

The central result of general relativity: Einstein's Equation

space-time curvature energy density

(a measure of local ) _ <a measure of matter ) (4.1)

m Colloquially: “Matter tells space how to curve, space tells
matter how to move”

m In this section, we introduce curvature and the vacuum
Einstein equation. Later, we introduce energy density.



PX4224: Advanced General Relativity and Gravitational Waves
L Lectures 8-10 : Curvature and the Einstein Equation [Hartle, Ch. 21]

L Tidal Gravitational Forces

Tidal Gravitational Forces

m A gravitational field can be detected by monitoring the
separation of two freely-falling particles.

m In Newtonian gravity, the equation of motion for a single
freely-falling particle moving in a gravitational potential
d = d(xk) is

d?x’ oL
— = —0'— 4.2
dt? Ox! (+2)

m If a second freely-falling particle is displaced from the first
by x', where |x/| < 1, then

d2Xi . a2¢

A Y/ k 4.3

dt? OxJ Oxk XX (43)
where the second partial derivative of ® is evaluated at
the location of the first particle.
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Exercise 9

Show that for ® = —GM/r, if two freely-falling particles are
separated by a small radial displacement Y, then

d? 2GM
X _ 26M

dt? r3
Similarly, if two freely-falling particles are separated by a small
transverse displacement y, then

d?x GM

dz B
Hence a ring of freely-falling particles would be distorted into
an ellipse (stretched in the radial direction, compressed
in the transverse direction) as it fell toward the center of
the gravitational potential.
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Tidal Gravitational Forces

m The quantity

0%®
- 4.4
OxJ Oxk (4.4)
is called the Newtonian tidal acceleration tensor.
m Note that 2o
2p=il——_ =14 4.
AV ) VT G (4.5)

is the field equation for Newtonian gravity.
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Geodesic Deviation

In GR, the Riemann curvature tensor plays the role of the
Newtonian tidal acceleration tensor.

To see this, let us consider two nearby geodesics.

m We take the proper time to be 7.
m Let u denote the tangent vector to the first geodesic.

m Let x denote the separation vector connecting points
along the geodesics with equal values of 7.

Note: there is no unique way to specify the relative time on
the two geodesics. E.g., we could require x - u =0 at 7 = 0.
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Geodesic Deviation

In analogy with the Newtonian case, we need to calculate the
second derivative, or “acceleration”, of x.

m The derivative of the vector x with respect to 7 is given
by the covariant derivative along u

v:=V,x (4.6)
m The second derivative of x with respect to 7 is given by

w:=V,V,x (4.7)
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L Geodesic Deviation

We want an expression for w that is linear in x and does not
contain its derivatives. We achieve this by

Substituting

o_ dx°
V4 =
dr
into e
v
o 77 r
W dr *
Ellmlnatmg the X term by using the geodesic equation
at x* + x*

+ My (x + x) =0

dr2 dr dr

expanded to leading order in x“.
Using the geodesic equation at x* to eliminate %.
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L Geodesic Deviation

Geodesic Deviation & Curvature

Hartle does the calculation in detail (posted in learning
central) — recommend working through it. The result:

is linear in x (and not its derivatives)
depends upon two factors of u® (recall that

d/dr = u“d,)
contains terms Ol and IT.
We obtain the geodesic deviation equation.
V.Vux® = —:"\’C“f,»mguﬁu‘sx7 (4.8)

where R3,5 are the components of the Riemann tensor.
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Riemann Curvature Tensor

m The explicit expression for the Riemann curvature tensor
is

ol “ss B oreg,

Ox7 0x9

R gy5 = 1% s = Ty (4.9)

m The Riemann tensor encodes the failure of initially parallel
geodesics to remain parallel.

m In other words, tidal effects of gravitation can be
attributed to the local curvature of spacetime itself, and
not to some “mysterious” force called gravity.



PX4224: Advanced General Relativity and Gravitational Waves
L Lectures 8-10 : Curvature and the Einstein Equation [Hartle, Ch. 21]
L Geodesic Deviation

Geodesic Deviation in a Freely Falling Frame

Consider a freely falling observer at x*(7), moving on a
geodesic.

m We can define an orthonormal basis {es;} (where e; = u)
at one point on the geodesic

m To extend to other points, we parallel propagate the basis
vectors along the geodesic, i.e.

V.es=0 and V,e*=0

m Then, we want to evaluate the geodesic deviation
equation in these co-ordinates.

First, an aside on tensor components in an orthonormal
frame. ..
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Tensor Co-ordinates in an Orthonormal Basis

m Given a vector a, its components in a given basis are:

a*=e*-a and a,=e,-a,

and similarly for tensors.
m For orthonormal bases:

and for a rank 2 tensor,
tas = (€a)(€5) tas

where (ez)* are the components of the orthonormal basis
vectors in the coordinate system we are using.
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Geodesic Deviation in a Freely Falling Frame

m We need to multiply both sides of the geodesic deviation

equation
V.Vux® = —:‘?o‘gﬂ,guﬂu‘s)(7
by (e%)a.
m By construction V ,e% = 0 so we can move it inside the
derivatives.

m Also, e; = u, so we can write

where

R% 405 = R%570(€%)ale;)" (e5)(e5)° .

m This is remarkably similar to the Newtonian expression.
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Exercise 10

For a weak static gravitational field described by the line
element

ds® = —(1+29)dt* + (1 — 20) [dx* + dy* + dz°]

show that 26

Ritkt = m—5—¢
/ OxJ Oxk
to first-order in ®.
Thus, in the weak field limit, we recover Newtonian gravity.
Hint: When evaluating the Riemann curvature, you can ignore
the I'T terms as they will be quadratic in ®.
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L Riemann curvature

Properties of the Curvature Tensor

m In a local inertial frame (I = 0, ' # 0), we can write the
Riemann curvature as (0, is short-hand for 0/0x*):

1
Rocﬁw& - 5 (awaﬁgaé - avaagﬁé + aéﬁagﬁw - 8686ga7)
(4.10)
m This reveals the symmetries of the Riemann tensor:

Ragys = —Rpars

Ragys = —Rapsy

Ragys = Rysap

Ragys + Raspy + Ransp = 0

m Rather than 4* independent components in 4-dimensions,
there are only 20. In 3-d there are 6 and in 2-d only 1,
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LEinstein Equation in Vacuum

Einstein Equation

m The vacuum field equation for Newtonian gravity is

2
.. 0}
V20 = 67 @ifaxf =0. (4.11)

m Einstein proposed a similar equation for General Relativity:

Vacuum Einstein equation

gMVRua;LB = Rﬂauﬁ =0. (412)

m The Ricci tensor is defined by
Rag = R“auﬁ (413)

The vacuum Einstein equation can be written as R,3 = 0.
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LEinstein Equation in Vacuum

Einstein Equation

The Einstein equation (4.12) is a set of 10 coupled,
non-linear, second-order, partial differential
equations for the metric components g,z.

There is no systematic way to solve a system of coupled,
non-linear partial differential equations. Very few
analytic solutions exist. These correspond to situations
with a high degree of symmetry.

More complicated situations require numerical solution of
the field equations. There is no analytic solution to the
two-body problem in GR.
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LEinstein Equation in Vacuum

Examples of Solutions to the Einstein Equation

The Schwarzschild solution exterior to a
spherically-symmetric star or black hole.

The Kerr solution exterior to a black hole (i.e., an
axially-symmetric spacetime). Does not hold for stars.

Gravitational waves (a weak gravitational field far from a
non-stationary relativistic source).

Friedmann-Robertson-Walker cosmological solution for an
homogeneous and isotropic universe, etc.
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Linearized Gravity

We want to show that the linearized gravity metric

8ap = Nap + has (4.14)
where |h, 5| < 1,
00 0 O 0 00O
hot2) = | 00 O O htear| 0 Y 0 Y | hee-a)
00 0 O 0 00O

and h,(t — z) and hy«(t — z) are arbitrary functions, is a
solution to the (linearized) Einstein equations.
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L Linearized Gravity

Linearized Einstein Equations

m It is easy to show that the Riemann and Ricci curvature
tensors vanish for flat space-time, n,3. So, flat space
satisfies the Einstein equation.

m We will expand everything to leading order in h,g,
ignoring anything of order h2.

m We need to calculate the linearized Riemann and Ricci
tensors and show that they satisfy the Einstein equations.

m Note: for quantities that vanish in the background, we
denote the leading order terms with a 9, for example
5Ra575.
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Exercise 11

Show that to first order in h,g the Riemann tensor has
components

(SRQ/B,Y(; = (ayagha(; — 878ah55 + agaahg,y — agaﬁhafy)

N —

where 0, is short-hand for 0/0x“.



PX4224: Advanced General Relativity and Gravitational Waves
L Lectures 8-10 : Curvature and the Einstein Equation [Hartle, Ch. 21]
L Linearized Gravity

Linearized Einstein Equations

The linearized Ricci tensor is:
OR.3 = 0R" o8
1
= 5 (0,ﬁahg — 0"0yhap + 0,0sh, — Gaaﬁhﬁ)

—_

= 5 (-Ohas + 0. V5 + 05 Vo) (4.15)
where
0,0 > + V2 4.16)
O =n" = —— .
el = T (

is the so-called D’ Alembertian (or wave operator) and

1
V., = 0sh? — 5aomg (4.17)
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Raising and Lowering Indices

m Note that for weak gravitational fields, one typically raises
and lowers indices with the background Minkowski metric
n*? and 1,5, and not with g% and g, 5. For example,

hg = n*h.g, hP=nh,,. (4.18)
m The only exception is g?, which still denotes the inverse
of gas, not N0 g,,. To first order

g’ ="’ — h*h (4.19)
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L Linearized Gravity

A Word About Coordinate Transformations

m It is always possible to find coordinates for which the
above decomposition is not valid — e.g., flat spacetime in
spherical polar coordinates does not satisfy (4.14), even
though the gravitational field is identically zero!

m The set of coordinates x* in which (4.14) holds is not
unique. It is possible to make an infinitesimal
coordinate transformation x“ — x’* for which the
decomposition with respect to the new set of coordinates
still holds.

m We will use this gauge freedom to our advantage to
simplify calculations.
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Choice of Coordinates

Consider an infinitesimal coordinate transformation
X% = x* +£%(x) where ]0,&°| <1 (4.20)

m To first-order, the transformation matrix from x’® to x” is

Ox” 5P 866 — 5P _8_68

=0 =07, 4.21
axla ax/a axa ( )
m To first order, the metric components transform as
OxH OxY
80 = Gy gy B = 85— 0uliy = Dot
or, equivalently,
h;g - haﬁ - 8045/3 — 8g§a (422)

Since |0.&p] < 1, it follows that |A[ 5| < 1.
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Choice of Coordinates — Lorentz Gauge

m It is always possible to find a set of coordinates for which
1
m:awﬁ—imwgzo

This is sometimes called the Lorentz condition (in
analogy with the Lorentz condition in electromagnetism).

m To see this, consider how V,, transforms under an
infinitesimal coordinate transformation:

V!, =V, — 030°,.

So, to set V. = 0, we need to solve the wave equation for

€'
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Linearized Gravity

m In the Lorentz gauge, the equations for linearized gravity

are
Uhap =0 (4.23)

with the additional condition
1
V., = 0sh°, — §aahﬁﬁ =0 (4.24)
m Thus, the metric perturbations satisfy the flat space wave

equation; hence the solutions can be interpreted as
gravitational waves.
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Solving the Wave Equation

m First, let's recall the wave equation for scalar functions

Of =0. (4.25)

m This has the solution

f(x) = ae** where k-k=0. (4.26)

m The most general solution is a superposition of plane
waves.
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Gravitational Wave Solution

m The most general gravitational wave solution is a linear
combination of plane waves:

hos = aap exp(ik - x) (4.27)
where k? satisfies:
Nask®k” =0 (4.28)

i.e., gravitational waves propagate at the speed of light.

m h,p must also satisfy the Lorentz condition:

1
V., = 0sh°, — §aahﬁﬁ =0
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Transverse Traceless Gauge

m We have additional coordinate freedom to simplify things
further: any coordinate transformation satisfying

0¢, =0 < &, = B,e™™

will preserve the Lorentz condition.
m Under such a transformation, a,; = ans — ikaBs — iks B,
and we can choose the B, so that

a; =0 a; =0 (4.29)

m The second of these sets the trace of a,3 to zero.
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Transverse Traceless Gauge

m With a;; = 0 and ag = 0, the Lorentz condition simplifies:
aw =0 and kia; =0 (4.30)

m The second of these ensures the wave is transverse: there
is no perturbation in the direction of propagation.

m These 8 conditions define the transverse traceless (TT)
gauge.

m We can simplify things further by choosing the z-direction
as the direction of propagation of the wave, so that
k* = (k,0,0, k), in which case we have:

attZO at,':O

a, =0 A +ay,, =0
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Transverse Traceless gauge

m The metric perturbations h,g in the TT gauge are thus

0 O 0 0
0 ay ax O iw(z—t)

haﬂ = 0 ax —ay 0 e (431)
0 O 0 0

m This is the most general solution of the linearized Einstein
equation with definite frequency w.

m The most general solution is a superposition of waves
with different directions of propagation, amplitudes and
frequencies.
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Lectures 11-12: The Source of Curvature
[Hartle, Ch. 22]
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LIntroduction

In the previous section, we introduced

Einstein's Equation

(a measure of local ) _ <a measure of matter )

space-time curvature energy density

And discussed in detail the left hand side (curvature). Here, we
move on to the right hand side (matter and energy density).

m We want to derive an expression for the stress-energy
density in the Einstein equation.

m Start with an easier concept: number density
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Number density

m Consider a box of volume V, at rest containing \/
particles. The number density is

n=N/V, (5.1)

m Now, consider an observer moving with velocity V relative
to the box. The length of the box in that direction will be
contracted by a factor (1 — V2)'/2 so the volume is

V=V,(1- V32 (5.2)
and the number density is

N=N/V=n(l- V)12 (5.3)
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Number density

The number density can be written as N = nu®, where u' is
the time component of the 4-velocity of the box. This
motivates introducing the

Number current 4-vector

N = nu (5.4)

The spatial parts describe the number current density:

. nV
N=nil=— 5.5
Tz (5.5)
describing the flow of particles across a surface
(per unit area per unit time).
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Conservation of Particles

By shrinking the volume V,, we can obtain an expression for
N(x) and N(x) at every point in spacetime.

Conservation Law

The number density and number current density must satisfy

%—’Zl+ﬁ-/\7:o (or O, N® = 0) (5.6)

Where the second expression holds in rectangular coordinates.
Integrating over a volume )V of space, we obtain:

2/Nd3x+ //\7-cfA =0 (5.7)
ot Jy ) Jov

J/

change in number  flux through surface



PX4224: Advanced General Relativity and Gravitational Waves
L Lectures 11-12: The Source of Curvature [Hartle, Ch. 22]
LNumber Density

Conservation of Particles

Summary: Densities of scalar quantities (number, charge) are
the time component of a 4-vector. Corresponding spatial
components are the current density.

Alternative view: Given a 4-vector number current N

The number of particles in volume AV (spacelike
surface), with timelike normal n is given by
AN =N - nAV.

The flux through area AA in time At (timelike surface),
with spacelike normal n is given by AN = N - nAAAt.

Densities are fluxes in timelike dimensions through spacelike
surfaces, currents are fluxes in spacelike dimensions through
timelike surfaces.



PX4224: Advanced General Relativity and Gravitational Waves
L Lectures 11-12: The Source of Curvature [Hartle, Ch. 22]
LEnergy & Momentum Density

Energy & Momentum Density

m Densities of energy and momentum are the sources of
space-time curvature

m We have introduced a density current 4-vector to
associate a scalar quantity with n,AY

m Energy and momentum form a 4-vector p®. We need a
rank-2 tensor to associate energy/momentum with n,A).

Stress Energy Tensor: T8

Ap® = T*ng AV (5.8)
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Energy & Momentum Density

Consider a space-like volume AV with a timelike normal
=(1,0,0,0). Then
m Energy density is

Apt
AV

€ =

— T (5.9)

m Momentum density in direction i is

: Ap
: — T 1
=AY (5.10)
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Example: Box of particles

Box of particles of rest mass m, number density n. With

respect to a moving frame:

energy = my where y = (1 — V2)71/2

number density N = n~.
Energy density is number density x particle energy

e=T" = (my)(ny) = mnutut
Momentum density is number density x particle momentum
= T" = (myV)(ny) = mnu'u®
The components of the stress-energy tensor are

T = mnu®u®
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LEnergy & Momentum Density

Interpretation of T%

Consider a 3-volume spanned by Ay, Az, At (normal
n=(0,1,0,0)). Then the associated momentum is

Ap® = TAyAzAt

Time component T

__BF
 AAAt
Flux of energy in the x-direction.

tx

Flux of energy is the same thing as a momentum density.
Example: Box of particles.

For each particle, E = mv, p = m7\7. So

energy flux = (energy density) x V = momentum density.
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Interpretation of T%

Spatial components T*

_ Ap'/At
 AA

i-th component of force per unit area exerted across a surface
with normal in x-direction Flux of energy in the x-direction.

Tix

More generally, components of force F exerted across area AA
with normal n:

AF' = T"n,AA
TV is the i-th component of force per unit area exerted across
a surface with normal in j-direction
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Example: Pressure

For a fluid at rest, the force exerted across a surface is always
along its normal, and the same for all directions.
The stress tensor is diagonal, with diagonal entries equal to

pressure p: ) )
TV = po?
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Stress Energy Tensor

energy
density

energy
flux

T =

mom.
density

stress (5.11)

tensor

The stress energy tensor is symmetric, 7% = T#2.
Momentum density is equivalent to energy flux.
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Example: Energy density measured by an Observer

Consider an observer with 4-velocity u,,s, and a small volume
AY with unit normal n = —ugy,.
Energy momentum of the matter contained in that volume is

Apo = Tos(—uf) AV
So the energy is
AE = —Ap * Uobs = aﬁugbsufbsAV

Energy density:
B
Ta@ u:)lbs Ugps

or Tgs in orthonormal frame where e5 = ugy,s.
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Conservation of Energy—Momentum

Conservation of Energy-Momentum in flat space-time

In flat space, energy of matter is conserved, so is the
momentum of matter. These four conservation equations can

be written as
oTebs

OxPB

~0 (5.12)

Time component:

de =
&‘FV'W—O

where € is the energy density, 7 is the momentum density or
energy flux. Similar to number density equation we saw._earlier.
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Conservation of Energy—Momentum

Spatial components:

or' oTU -
=¢'

ot 0x

where ¢' is a force density. This is F = ma& in continuum.
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Example: Pressure force on a Volume

Consider a cube of size L (with edges aligned with the axes) in
a fluid for which T% = 6Up. Pressure forces on the y — z faces
are:
Fl = L2p(X7.y7Z)
F2 = _L2P(X+ Layaz)
The net force is
F* = Fl - F2 = Lz[p(X,y,Z) —p(X—f-L,y,Z)]

dp
~ 13
Ox
This agrees with our definition of force density (¢ = F/L3):
N oT™ op
o= =

ox  _ Ox
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Perfect Fluid

A fluid is “perfect” when we can ignore heat condition,
viscosity, transport and dissipative processes. In this case:
T8 = diag(p, p, p, p) [Fluid rest frame]
= (p+ p)ut’? + nusp [General expression]
Here u is the fluid 4-velocity, p is the energy density and p is

the pressure. The energy density and pressure are related by
an equation of state:

p=0 dust
ng CMBR

p=—p vacuum energy
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LEnergy & Momentum Density

Conservation of Energy-Momentum

We want to generalise all of this to curved spacetime:

Perfect fluid stress energy

T = (p+ p)uu’ + gasp (5.13)

in curved spacetime

Local conservation of Energy Momentum

VT =0 (5.14)

Energy of matter is not conserved in curved spacetime, but
changes in response to the curved geometry.
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Exercise 12

Show that the stress energy of the vacuum:

A
T\f;fg = pvacgaB = _87TGgaﬁ
satisfies the local conservation law
VT =0

provided that A is a constant.
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The Einstein Equation

The Einstein Equation

a measure of local [ a measure of matter (5.15)
space-time curvature /  \ energy density '

We now have candidates for both curvature (R,s, R) and
energy density T,s. This suggests an equation of the form
Rag + /\ga,BR = IiTag

for some constants A\ and «.
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The Einstein Equation: Fixing A

We know that Vg T# = 0. We use this to fix the value of
M. To do this, we need the:

Bianchi ldentity

VaR,B’y5e + VﬁR’ya(Ss + v’yRa,Bée =0

By contracting indices appropriately, we obtain

1
V(R — Eg“’BR) =0 (5.16)
This fixes A = —%. Introduce Einstein Tensor
1
Gop = R — Zg*’R (5.17)

2
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The Einstein Equation: Fixing k

We fix x by requiring that the Einstein equation reduces to
Newton's gravity in the weak field limit:

ds® = —(1+2®)dt* + (1 — 20) [dx* + dy® + dz°]

In weak field, low velocity limit:
m Rest mass energy, p is small
m Kinetic energy ;1V? is smaller (as V < ¢)
m Potential energy p® is smaller (¢ is small)

So, only significant component of stress energy T is

T = 4. (5.18)
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The Einstein Equation: Fixing k

In exercise 10, we calculated Rjy: = 9;0k®. So, Ry = V3.
You can calculate the rest of the components of the curvature
tensor in a similar way (Appendix B of Hartle), and obtain:

Gtt:2v2¢+...

and all other components of G,z are of order ®2.
So, we have
V20 = kp
Comparing with Newtonian gravity (V2® = 47 Gp) fixes
k= 8mG.
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The Einstein Equation

Putting it all together, we get:

The Einstein Equation

1
Gaﬂ = Raﬁ — EgaﬁR = 87TGTa5 (519)


Sutton



PX4224: Advanced General Relativity and Gravitational Waves
L Lectures 13-15: Gravitational Wave Emission [Hartle, Ch. 23]

Lectures 13-15: Gravitational Wave
Emission [Hartle, Ch. 23]
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Linearized Einstein Equation with Sources

We now want to study solutions to the linearised Einstein
equation in the presence of matter. As before, we expand the
metric as

8ap = Nap + hag  where  [hys[ <1 (6.1)

and look for a solution to

1
Raﬁ — igaBR = 87TGTQ5 (62)

where the curvature produced by the source 7,3 is weak
enough that the linearised approximation holds.
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“Trace-reversed” amplitude

When solving the linearised equations in vacuum, it was useful
to introduce the Lorentz condition

1
V, = 0sh°, — Eaah% =0

This is much simpler if we introduce the “trace-reversed”

amplitude
- 1
hop = hap — E%Bh (6.3)

Then, the Lorentz condition simplifies to

dsh*? =0 (6.4)
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Linearized Einstein Equation with Sources

We showed before (4.15) that in the Lorentz gauge,

1
6Rap = —50hag

From which, we get:
1 1 -
Gap = ORap — §5R = —EDhaﬁ (6.5)

So that ~
Dhaﬁ = —167TGTa5 (66)



PX4224: Advanced General Relativity and Gravitational Waves
L Lectures 13-15: Gravitational Wave Emission [Hartle, Ch. 23]

Solving the wave equation with a point source

Let's start with the scalar wave equation:

0’f(x) = .
o + V2f(x) = j(x). (6.7)
Start by solving for a source localised in space and time, i.e.
J(x) = 4(t)5(x)d(y)o(2) (6.8)

Spherical symmetry implies the solution can depend only on t
and r = |x|. Away from the source, the solution is

g(t.r) = Ot~ r) + (¢ + 1) (6.9)

which represent Outgoing and Ingoing waves. Physically, we
are only interested in outgoing waves.
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Solving the wave equation with a point source

The solution to

T80 | S = 8030000 (610)
g(t,r)= _6(:;:) (6.11)

Can show this by integrating over a small volume near the
origin.
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Solving the wave equation

Since the wave equation is linear, the solution for a general
source is the sum of the solutions for many point sources.
The solution to the wave equation with source j(t, x) can be
written:

f(t,x) = /dt’d3x’g(t —t', X = x)j(t',x) (6.12)

Since g(t — t/, X — X') o< §(t — t' — |X — X"|), we evaluate the
integral at the retarded time, t’' =t =t — [X — X|:

f(t,x) = 417T/d3 ’M (6.13)

X = x|
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Linearized Gravity Solution

Returning to linearised gravity, the solution is

Taﬁ(t/’ )—(/)}

X = X|

h*P(t,X) = 4 / d3x'[ zet (6.14)

Note: this necessarily satisfies the Lorentz gauge condition.
Finally, if we are far from the source (r > Rsource) and the
waves have a long wavelength (A > Ruice), then

. 4
P (t,X) — = | &X' T(t —r, %) (6.15)

r—oo

We'd like to rewrite in terms of T = 1, the mass density.
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Exercise 13

From the conservation law for T¢5:
O T+ 0, T =0 and 9, T*+0T"=0,
show that

82 Ttt 82 Tkl
otz Oxkox!
By Multiplying by x'x/ and integrating over a volume that
encompasses the source (and integrating by parts) show

3 ij 1d° 3y iy Tt
dXTJ(X):E@ d>x x'x) T™(x)
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Generation of GWs

For systems with weak gravitational fields, long wavelength,
large r, the metric perturbation far from source is

Rit, %) = 2Tt — 1) (6.16)

r
Here h¥ is the "trace-reversed” perturbation:
B = hi — L g 6.17
= i — o7 b, (6.17)
17 is the "second mass moment” of the source:

1(t) = /d3x,u(t,)?) x'x | (6.18)

w is the mass-density of the source, and the dot ()-is 9/0t.



PX4224: Advanced General Relativity and Gravitational Waves
L Lectures 13-15: Gravitational Wave Emission [Hartle, Ch. 23]

Example: Binary Systems

Consider two stars of the same mass M in orbit of radius R
around their centre of mass, with a period P.
Order-of-magnitude estimate of GW amplitude:
| ~ 2MR?
I ~ 2MR?/P?
For circular motion
M V2 (2nR/P)?

So,
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Exercise 14

For a neutron-star binary (M ~ 1.4M,) at 6 kpc with
P = 8 hr show that h ~ 1072,

What is the period when the system is about to merge
(Neutron stars have a radius of about 10 km)?

What is the gravitational wave amplitude at earth at
merger?
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Gravitational Radiation from Binary Stars

Let's do the calculation in detail. From

M V> _ (2nR/P)

(2R~ R R

and Q = <5 we get

5
M\ 3 Mp2\ /3
() - (i52)
First, check we are in the long wavelength, large distance limit.

1/2
A~ 2 5o B < <RM*> . And R, > 2M, so this is satisfied.
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Gravitational Radiation from Binary Stars

For an equal mass binary, the position of one of the stars is
x(t) = RcosQt, y(t)=RsinQt, z(t)=0
The second mass moment is

> = 2MR? cos® Qt = MR?[1 + cos(29t)
1Y = 2MR?sin Qt cos Qt = MR?sin(2Qt)
> = 2MR?sin? Qt = MR?[1 — cos(2t)]

]

and all other components vanish.
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Gravitational Radiation from Binary Stars

Substituting into

_ 2 ...
ho(t,x) = —1%(t = r) (6.20)
gives
o Q2 MR? cos(2Q2t) sin(2Qt) O
hY = S MR sin(2Qt) —cos(2Q2t) 0 (6.21)
' 0 0 0

Gravitational wave frequency is twice orbital frequency.
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Directional dependence

For an observer in the z-direction, the perturbation is
transverse-traceless. It constitutes two polarisations h,
and hy of equal amplitude but 90° out of phase.

For an observer in the x-direction, calculate
transverse-traceless perturbation by:

m setting longitudinal terms to zero
m subtracting off trace, to get

0 0 0
—. A2MR?
hY = ————1 0 —cos(2Qt) 0 (6.22)
r 0 0 cos(2Qt)

One polarisation and half the amplitude.
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Energy Loss in Gravitational Waves

Motivate the equation for energy in gravitational waves from:

The argument that energy in gravitational waves should
be proportional to the amplitude h¥ squared.

Luminosity (or power) is dimensionless (in geometric
units). Only the third time derivative of /¥ is

dimensionless.

Luminosity is a scalar, so it can only depend on | Vi

and (7 7%)2.
This leads to (we have not derived the numerical factors):

ij if i 1
Low = gguu,p where 47 =¥ — g(SJ/kk

and (-) denotes average over a period.
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Energy loss from a binary

Using the previous expression for /¥, and recalling that
(sin® 2Qt) = (cos? 2Qt) = %, we get

12
Low = ?8M2R4Q6

for an equal mass binary system.
Using Kepler's law, and inserting G and c factors gives

M 1h 10/3
Law = 1.9 x 10% (/vl_@?) erg/s (6.23)

For comparison, solar luminosity is Lo, = 3.9 x 10%3erg/s.
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Evolution of the orbit

The energy of a binary system, in Netwonian mechanics, is

1 M2
E=KE+PE=2(-MV?) - —
* (2 ) 2R?
M M (arM\*P
4R2 - 4\ P

Energy is negative (bound system), so radiating energy causes
orbit to shrink.
dE

Rate of change of energy is %= = —Law, giving

dP M 1h\°"
— = 34X 1012 (M_QF) (6.24)
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Hulse Taylor Pulsar

0 I I I I|.im of zlero orhiltal decaslf ]

- "’;' ' m Masses 1.4M,,
g'“’g‘ 1 m Period 7.75 hours.
.g e 1 1 m Orbit decreases by
E-of . ~ 10pus per year.
; -es | 1 = Observed decay
__;3 -t S By ey = ] matches GR
3 b p.rediction _
s ) (incorporating

3 ellipticity)

sk J . L
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Year
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Lectures 16-17: Gravitational Wave
Detectors [Maggiore Ch 9;
Creighton/Anderson Ch 6]
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How sensitive?

m We have shown (Exercise 14) that the gravitational wave
strain from the Hulse-Taylor pulsar will be about
h ~ 10718 at merger.

m But, we'd have to wait about 300 million years for this.

m Alternatively, we could detect any merger in the galaxy.
These are expected to happen about once every 10,000
years (as high as 1 per thousand, as low as 1 per million
years).

m Instead, look for a mergers in a million galaxies. Galactic
density is about 0.01 Milky Way equivalent galaxies per
Mpc3. i.e. build a detector sensitive to binary mergers
out to ~ 100 Mpc.

m This requires a sensitivity of about h ~ 10723,
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A basic Michelson interferometer
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L Detector basics

A basic Michelson interferometer

For a lossless mirror:

E
- . Ny ET
Ex
ET = tE/ ER = rE,
[t +]r? =1

For light incident from the
other side, t' =t, r' = —r.

For the beam splitter, half of
the light passes through:

r=t=—.

V2
When the arms are equal
length, there is destructive in-
terference and no light is seen
in the photodiode. [The fact
that r' = —r explains why we
have destructive interference.]
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Estimate of sensitivity

Change in length A¢ = Al; — Al,. Measurable change in
length when Al ~ \.ger.

Assume a kilometre scale detector, and Ajager ~ 1pum. Then,
measurable GW strain:

o AV Maser 10~°m

_1n-9
14 12 103m 10

h

This is 14 orders of magnitude too large! This can be
overcome by using longer effective arms, better measurement
of Al and high laser power.
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Increasing the arm length

We can increase the effective arm length by making the light
travel up and down the arm numerous times. The longest
feasible is

bt ~ Aaw = ¢/faw

For ground based detectors, fow = 100 — 1000Hz =
Lo ~ 1000km. This gets us to

AL e 107%m

h
geﬁf )\GW 106m
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Fabry Perot cavities

Comprised of two mirrors: one 1 Nis gives
partially transmissive, one fully

tirm
reflective: Erp = ——————-7E
1+ rirme
IT™ ETM Y
o - At resonance, e 2% = —1 5o
E[ I. ; F MW"WH—"‘E t
| ; IT™
o L‘—“"-*‘*'—MM—" Erp, = ———E;.
+L_ Etpa= Epp e 2kl +L“"7 1 — r[TM
- L 1
i I L 1

so if riym is close to 1, can
build up a lot of power. Light

_ does (on average) —5—
Erpy = tirmEr — rirmErpa ( _ ge) 1-rZy
round trips before coming

—2ikL
= trmEr — rirme Erps
out.
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Response to a gravitational wave

For a simple Michelson interferometer, ‘

At low frequencies, At o hl/c o X

The detector will be insensitive s Y - S

200 400 600 800 1000 1200 1400

to GW with ¢ = )\GW- f(Hz)
1 1 Fig. 9.13 A plot of the function
In general, the response is proportional oo Gt o) o
] d to the function [sinc P
to hg Slnc(g/)\GW) ?;:hedoline; '\;Ve have taken f, =

More complicated for a Fabry-Perot i

cavity as light undergoes varying num- _
ber of round trips, but still lose sensi- Dashed: Michelson

tivity at higher frequencies. Solid: Fabry Perot.
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Improved measurement of the optical fringe

Can measure length changes much smaller than A, what's
the limit? Want to measure light intensity at the photodiode.
Random fluctuations in the number of observed photons are
N2 ' hysical ch ller than thi
~ Nijotons: CAN't Measure physical changes smaller than this,
ie.
1/2
Al ~ photons /\laser
Nphotons
We can only collect photons for a time about equal to the
period of the gravitational wave, i.e. 7 ~ 1/fgw. Total
number of photons collected depends upon GW frequency and

laser power:

N o Plaser . 'Dlaser>\laser
photons — ~
hc/)\laser hc fGVV
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Exercise 15

Using
N Pua P
PR T hC Naser B faw
and taking
Plaser = 1W
Alaser = 1pm
fow ~ 300Hz

estimate the number of photons that can be collected.
What is the sensitivity h = % that can be achieved?
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Higher laser power & signal recycling

We saw that with a 1W laser, can get a sensitivity h ~ 10=%0.
Can do better with higher laser power. Achieved in two ways:

Use a higher power input laser. Advanced LIGO uses
150W.

Use power recycling. When the interferometer arms are
equal length, there is no signal at the photodiode — it all
goes back out towards the input. Simply reflect this back
into the detector to build up laser power

In a similar way, can use signal recycling. Reflect the signal
that comes out of the interferometer back into the detector.
This can improve the sensitivity of the detector.
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The advanced LIGO detector

ETM

Test Masses:
fused silica,
34 cm diam x 20 cm thick,
40kg

ETM
B15KW I

l

PD
v ,--- oo—» GW readout

Output
Mode
Cleaner
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L Detector basics

The LIGO Hanford Observatory
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L Noise sources

Limits to detector sensitivity

We have argued that it's possible, in principle, to make a
gravitational wave detector that is as sensitive as required.
Let's look now at some of the sources of noise that limit the
sensitivity. We will discuss

m Quantum noise: shot noise and radiation pressure.
m Thermal noise
m Seismic noise

Characterize sensitivity using the noise spectral density
1 Ny
SSi(F) = (A(FP)AF

or amplitude strain sensitivity 5,1/2(1‘).
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L Noise sources

LIGO-Hanford Detector Noise Spectrum, 2007

violin

seismic noise | modes::

noise amplitude (Hz"”z)
>

shot noise
thermal
noise

frequency (Hz)
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L Noise sources

Shot noise

Shot noise is simply the photon counting noise we met before.

Al /\laser o 1 hc )\laser

b OV PT
Detailed calculation for a Michelson interferometer gives (see
Maggiore):
§12 () = A (mlaser) i
shot 4rlL P
Notes:

This is frequency independent, but for a realistic
(Fabry—Perot) interferometer, need to account for
detector response.

Higher power reduces shot noise.
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L Noise sources

Radiation Pressure

Can’t increase laser power indefinitely without repercussions.
m Photons bouncing off mirrors impart momentum, moving
the mirrors stochastically.
m More power — more photons — more radiation
pressure noise.
Momentum transfer to mirror due to reflection of a photon is
2|p|, and energy is E, = |p|/c so, force due to wave with

power P is
F=2P/c.
Fluctuations in time 7 are
P
AF — 92 hwlaéser
cT

Higher power leads to greater variation in.force.
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L Noise sources

Radiation Pressure

Spectrum of radiation pressure force:

2mhP;
F(f)=2 =
(f) =Y
Corresponding motion of each mirror (from F = ma):
F(f)
f)= .
)= ity

The power spectrum of the fractional relative length change
from the sum of the 2 arms is then
4 2hwaser P
51/2 £ = aser
rad (F) ML(27f)? c?2

Want lowest laser power to reduce radiation pressure-noise.
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L Noise sources

The standard quantum limit

Shot noise decreases with laser
power, while radiation pressure in-
creases with laser power.

At any given frequency f = f
the sum Sgot + Siaq IS Minimized
by choosing the power P to make
Sahot = Sraq. The total noise is then

_IEI_" o I‘blf.(Hy) 10°

Ssl& = Lﬂ\/%. Radiation pressure and
27 shot noise contributions

This minimum noise level is called for different values of f;.
the standard quantum limit.
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L Noise sources

Seismic Noise

Seismic noise is due to shaking of the ground, due to
earthquakes, weather, human activity, etc. It affects the
interferometer by shaking the optical components.
If the mirrors were resting on the ground, the seismic noise
would be
10Hz
SHZ ~ 10712H, 2 <—) for f > 10Hz
f
This is many orders of magnitude larger than the gravitational
wave signal we are trying to measure. Need to suppress the

effect of seismic motion on the motion of the mirrors: suspend
them as pendular.
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L Noise sources

Seismic Noise

Mirrors are suspended as pendula (simple harmonic oscillators).
If X is the position of the pivot point, x is the position of the
mirror and ¢ is the length of the pendulum, then

d2
14X

dt?

Taking Fourier transform:
—47% 2% = —g(% — X)

= —g(x = X)

We can rewrite this as

. 1
X(f) = A(f)X(f) where A(f) =
1~ (f/foena)”
1 /g
and fi)end - % Z
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L Noise sources

Seismic Isolation

For f > fyend,
%(F) ~ = (foena /) X(f)

SO seismic noise is suppressed.
Increase isolation from ground by
“stacking”. e.g. Advanced LIGO uses
a quadruple pendulum.

LIGO also uses active isolation: sen-
sors monitor motion of suspension sys-
tem; control motors that push back on
system to cancel ground motion.

Can get required sensitivity, but not
easy, especially at low frequencies.

Advanced LIGO
suspension.
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L Noise sources

Thermal noise

Equipartition Theorem: each degree of freedom of a system
in thermodynamic equilibrium at temperature T should have
an energy whose expectation value is %kB T.

Main physical manifestations of thermal noise:

m Random motion of atoms in mirrors.
m Vibration in wire suspensions of mirrors (“violin modes” ).
m Swinging of the mirror pendula.
Induces random “jittering” of positions of mirrors.
m E.g., m = 10kg mirror suspended from a ¢ = 1m wire:

kg TV
mg

AL ™~ ~6x107%m.
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Fluctuation-Dissipation Theorem

For a linear system subject to a force F.., can always write
the equation of motion as

Y (F)Fuxe(F) = 27if () = v(f)

Where Y is the admittance of the system.
Then, the power spectrum of thermal fluctuations in
equilibrium at temperature T is given by

4kg T

Stherm(f) ( ) |R [Y( )]|

This applies to any linear system in thermodynamic
equilibrium.
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L Noise sources

Exercise 16

Consider a harmonic oscillator with mass m, spring constant k,
and dissipative force —bv:

Fext = mx + bx + kx,

1 [k
The resonant frequency is fo = 5-4/ .

Show that the equation of motion can be written as
Fexi(F) = —4mm(f? — £2)X(f) + b(2mif )X(F)
From this, show that the admittance Y is

Y(F) = 27if B 2h — 27rifm(f2 — f02)
~ 2mibf — 4m2m(f2 — f3) Cb2f2 4 (2rm)?[f? — f3]?
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L Noise sources

Fluctuation-Dissipation Theorem

For this example

ke T b
f) = '
Stherm(f) 72 b2f2 + (2rm)?[f2 — f3]?

Total noise power (or
RMS  displacement)
does not depend on
the magnitude b of
the dissipation, but

—_
(=)

|
o

-10]

noise power (arb units)
o

the shape of the 10
power spectrum does .
—b=10"
depend on b. 107° - : :
P 107 107 10° 10' 10°

frequency (Hz)
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L Noise sources

Fluctuation-Dissipation Theorem

Can minimize impact by making dissipation (b) small.
Concentrates noise power at resonant frequency f.

m Suspend mirrors as pendulums (low b, resonant frequency
~ 1Hz — well below observation band).

m Use high-quality-factor wires for suspensions, so
vibrational motion of “violin modes” is concentrated in
narrow frequency range.

m Minimize the thermal noise from internal vibrations of the
mirrors by making them from material with very low
dissipation at acoustic frequencies at room temperature
(fused silica).
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L Noise sources

The advanced LIGO noise budget

Strain [1\HZ]

= Quantum noise

= Seismic noise

= Gravity Gradients

= Suspension thermal noise

= Coating Brownian noise
Coating Thermo-optic noise
Substrate Brownian noise
Excess Gas

we Total noise

Frequency [Hz]
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