PX4224: Advanced General Relativity and Gravitational Waves

PX4224: Advanced General Relativity and

Gravitational Waves

Bernard Schutz — SchutzBFQcardiff.ac.uk
Patrick Sutton — SuttonPJ1Qcardiff.ac.uk

Cardiff University



PX4224: Advanced General Relativity and Gravitational Waves
L Lecture 18: LIGO Detections

Lecture 18: LIGO Detections




PX4224: Advanced General Relativity and Gravitational Waves
L Lecture 18: LIGO Detections

Discovery: GW150914

m Advanced LIGO was just finishing final commissioning,
left overnight in observing mode.

m Signal arrived at 09:50:45 UTC on 14 Sept 2015.
Louisiana: 05:50, Hanford: 03:50.

m Was it real? No injections, no apparent hacking. Yes, it
was real!

m Months of analysis, calibration, and paper-writing
followed.

m Announced on 11 February 2016, after discovery paper
was accepted by PRL.

m Huge PR event: 70 million tweets, PRL website crashed!
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Properties of GW150914
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How signals are found: data analysis

m Binary coalescence signals can be modelled, so we use
matched filtering. Assume model signal is h(t).
m Detector output s(t) is correlated with signal arriving at t:

o(t) = [s * h](t) = /s(t’)h(t’ bt
m If detector output is just Gaussian noise n(t) with
standard deviation o, then
< o(t) >=0; < |o(t)]? >= o?|h|*.
m But if o(t) = n(t) + h(t — to) for some ty, then
< o(ty) >= |hf% SNR? = |h|?/o?.
m NB: if h(t) is a wavetrain with N cycles of amplitude a
|h|? oc Na?; SNR oc N¥23/0.
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Exercise 18

For GW150914, use the waveform and Factsheet to estimate:

the wave's amplitude, frequency, and rate of change of
frequency just before merger;

the amplitude of the noise;

the number of cycles the signal was in band;

the expected SNR from matched filtering in one detector;
the average mass M of the black holes from

dP M 1h\ >3
 — 34x10°R(——= 11
dt 3410 (MQP) (1.1)
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Waveform families

m h(t) depends on many parameters: masses, spins
(intrinsic); sky location and orbit orientation (extrinsic).

m All but last few orbits can be modelled with a very high
order post-Newtonian analytic approximation.

m The last orbits need numerical relativity (for BBH), also
tidal approximation (for BNS).

m Template families: analytical approximations called EOB
and TaylorF2 that fit well over whole parameter space.

m When something is detected, the data are re-analysed
with the best approximations.

m Significance: SNR, but also because of glitches we quote
a false-alarm rate.
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Further BBH detections
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Why so many heavy black holes?

m Most astronomers pre-2015 believed BBHs might not
exist: system would not survive common-envelope
evolution phase.

m Belczinski and others predicted that low-metallicity stars
would survive, and would also have higher masses.

m Another possibility is formation in globular clusters, via
hierarchical mergers.

m A recent suggestion by Smoot and colleagues: they are
ordinary BHs subject to extreme lensing.
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GW170817: the first BNS merger

m Strong GW detection followed within 2 seconds by
gamma-ray burst.
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Multimessenger observations of GW170817

m With 3 detectors, the GW observation pinned down the
sky location and distance, enabling follow-up.

W
ay
'
Xray,
W —
Optical -—
[T 1
[ —_—
W i
a cun
"\\ i
M2H Swope |[DLT40 VISTA Chandra
> & ¥ I
10.86h i11.080 h11.240 vik| ed Xeray
MASTER DECam Las Cumbres VA

GW150914 GW15 !
»yeY»

11.31h, w 11,400 i|nsm W 164d Radlo



PX4224: Advanced General Relativity and Gravitational Waves
L Lecture 18: LIGO Detections

Distance measurement and the Hubble Constant

m How was distance d measured for these events? Binary
inspirals are standard sirens.

m Chirp rate informs us how fast system is losing energy —
intrinsic luminosity L.

m Observed amplitude tells us the apparent brightness B.
m To within angular factors (measured by 3 detectors)
L/B = 4rd?.
m Distance (40 Mpc) helped identify host galaxy, NGC4993.

m The cosmological recession velocity v of NGC4993 gives
local expansion rate of universe (Hubble constant Hp):

Ho :=v/d. (1.2)
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Hubble Constant measurement
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Models of the merger

m Although event was very nearby, gamma-ray burst was
not exceptionally strong. Why?

m Tidal effects and problems with GW data led to
uncertainties on individual masses.

m That, plus inclination uncertainty, make modelling of
merger event uncertain.

m Standard model: bright gamma-ray burst broke through
expanding cloud, we view from ~ 30° angle
(cost = 0.87).

m Alternative: weak burst almost hidden by cloud, viewed
from ~ 10° angle (cos: = 0.98).
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Prospects for future observations

LIGO and Virgo expected to resume late 2018, maybe
range x1.5, event rate x3, vetoing glitches.

Clarify origin of BBHs, statistics of BNS, better Hy.
2020: Japanese KAGRA (3km, cryo); LIGO, Virgo x1.57
LIGO-India joins 2025(7)

Improvements to LIGO continue with newer technologies.
Long-range plans for LIGO (40-km detector) and Virgo
(10-km underground triangle called Einstein Telescope).
ESA's LISA detector launches 2034, opens up rich mHz
GW frequency band — confusion-limited!

Pulsar timing arrays (radio astronomy) could detect nHz
GWs from SMBH binaries any time now.

CMB polarisation telescopes looking for primordial GWs —
fundamental!
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