Bernard Schutz – SchutzBF@cardiff.ac.uk Patrick Sutton – SuttonPJ1@cardiff.ac.uk

Cardiff University

<ロ > < 母 > < 臣 > < 臣 > 臣 の へ つ 1/14

Lecture 18: LIGO Detections

#### Lecture 18: LIGO Detections

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 2/14

# Discovery: GW150914

- Advanced LIGO was just finishing final commissioning, left overnight in observing mode.
- Signal arrived at 09:50:45 UTC on 14 Sept 2015. Louisiana: 05:50, Hanford: 03:50.
- Was it real? No injections, no apparent hacking. Yes, it was real!
- Months of analysis, calibration, and paper-writing followed.
- Announced on 11 February 2016, after discovery paper was accepted by PRL.
- Huge PR event: 70 million tweets, PRL website crashed!

Lecture 18: LIGO Detections

### Properties of GW150914



| GW15                                           | 50914:                                                      | FACTSHEET                                                                                          |  |
|------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| BACKGROUND IM<br>(BOTTOM) IN TH<br>HORIZONS (M | AGES: TIME-FREQU<br>IE TWO LIGO DETEC<br>IDDLE-TOP), BEST I | ENCY TRACE (TOP) AND TIME-SERIES<br>TORS; SIMULATION OF BLACK HOLE<br>FIT WAVEFORM (MIDDLE-BOTTOM) |  |
| first direct detect                            | tion of gravitational<br>of a black                         | waves (GW) and first direct observation hole binary                                                |  |
| observed by                                    | LIGO L1, H1<br>black hole (BH) binary                       | duration from 30 Hz - 200 ms<br># cycles from 30 Hz -10                                            |  |
| date                                           | 14 Sept 2015                                                | peak GW strain 1 x 10-21                                                                           |  |
| time                                           | 09-50-45 LITC                                               |                                                                                                    |  |
| likely distance                                | 0.75 to 1.9 Gly<br>230 to 570 Mpc                           | peax displacement of ±0.002 fm<br>interferometers arms<br>frequency/wavelength 150 Hz 2000 km      |  |
| redshift                                       | 0.054 to 0.136                                              | at peak GW strain                                                                                  |  |
| signal-to-noise ratio                          | 24                                                          | peak speed of BHs ~ 0.6 c<br>peak GW luminosity 3.6 x 10 <sup>56</sup> erg s <sup>-1</sup>         |  |
| false alarm prob.                              | < 1 in 5 million                                            | radiated GW energy 2.5-3.5 Mo                                                                      |  |
| false alarm rate                               | < 1 in 200,000 yr                                           | remeant ringdown freq - 250 Hz                                                                     |  |
| Source Masses Mo                               |                                                             | remain ingoverney. 200 m                                                                           |  |
| total mass                                     | 60 to 70                                                    | remain damping one - 4 ms                                                                          |  |
| primary BH                                     | 32 to 41                                                    | remnant size, area 180 km, 3.5 x 10° km*                                                           |  |
| secondary BH                                   | 25 to 33                                                    | consistent with passes all tests                                                                   |  |
| remnant BH                                     | 58 to 67                                                    | graviton mass bound $ \leq 1.2 \times 10^{-22} \text{ eV} $                                        |  |
| mass ratio                                     | 0.6 to 1                                                    |                                                                                                    |  |
| primary BH spin                                | < 0.7                                                       | binnov black balar 2 to 400 Gpc <sup>-2</sup> yr <sup>-1</sup>                                     |  |
| secondary BH spin                              | < 0.9                                                       | Childry Childe Hows                                                                                |  |
| remnant BH spin                                | 0.57 to 0.72                                                | online trigger latency ~ 3 min<br># offline analysis pipelines 5                                   |  |
| signal arrival time                            | arrived in L1 7 ms                                          | = 50 million (=20.000                                                                              |  |
| delay                                          | before H1                                                   | CPU hours consumed<br>PCs run for 100 days)                                                        |  |
| likely sky position                            | Southern Hemisphere                                         |                                                                                                    |  |
| likely orientation<br>resolved to              | face-on/off<br>~600 sq. deg.                                | # researchers -1000, 80 institutions<br>in 15 countries                                            |  |

Jetector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds Accesyms: L1=LIGO Livingston, H1=LIGO Hanford; Gly=giga lightyaar=9.46 x 10<sup>12</sup> km; Mpc=mega parasc=12 million lightyasc, Gpc=10<sup>14</sup> Mpc, fm=femtometer=10<sup>13</sup> m, MiO=1 tolar mass=2 x 10<sup>16</sup> kg

・ロト ・ 日 ・ ・ 目 ・ 目 ・ う へ へ 4/14

### How signals are found: data analysis

- Binary coalescence signals can be modelled, so we use matched filtering. Assume model signal is h(t).
- Detector output s(t) is correlated with signal arriving at t:

$$o(t) = [s \star h](t) := \int s(t')h(t'-t)dt'.$$

If detector output is just Gaussian noise n(t) with standard deviation σ, then

$$< o(t) >= 0; \qquad < |o(t)|^2 >= \sigma^2 |h|^2.$$

But if  $o(t) = n(t) + h(t - t_0)$  for some  $t_0$ , then

$$< o(t_0) >= |h|^2;$$
 SNR<sup>2</sup> =  $|h|^2/\sigma^2$ 

#### Exercise 18

For GW150914, use the waveform and Factsheet to estimate:

- the wave's amplitude, frequency, and rate of change of frequency just before merger;
- 2 the amplitude of the noise;
- 3 the number of cycles the signal was in band;
- 4 the expected SNR from matched filtering in one detector;
- 5 the average mass M of the black holes from

$$rac{dP}{dt} = -3.4 imes 10^{-12} \left( rac{M}{M_{\odot}} rac{1 \mathrm{h}}{P} 
ight)^{5/3}$$
 (1.1)

< □ > < @ > < E > < E > E の < € / 14

### Waveform families

- h(t) depends on many parameters: masses, spins (intrinsic); sky location and orbit orientation (extrinsic).
- All but last few orbits can be modelled with a very high order post-Newtonian analytic approximation.
- The last orbits need numerical relativity (for BBH), also tidal approximation (for BNS).
- Template families: analytical approximations called EOB and TaylorF2 that fit well over whole parameter space.
- When something is detected, the data are re-analysed with the best approximations.
- Significance: SNR, but also because of glitches we quote a false-alarm rate.

Lecture 18: LIGO Detections

#### Further BBH detections



# Why so many heavy black holes?

- Most astronomers pre-2015 believed BBHs might not exist: system would not survive common-envelope evolution phase.
- Belczinski and others predicted that low-metallicity stars would survive, and would also have higher masses.
- Another possibility is formation in globular clusters, via hierarchical mergers.
- A recent suggestion by Smoot and colleagues: they are ordinary BHs subject to extreme lensing.

Lecture 18: LIGO Detections

# GW170817: the first BNS merger

Strong GW detection followed within 2 seconds by gamma-ray burst.



| GW170817 FACTSHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|
| 1303 Hering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LKOLLivingson                                              | Nige<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |  |  |
| observed by source type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H, L, V<br>binery neutron star (NS)                        | inferred duration from 30<br>Hz to 2048 Hz**                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~ 60 s                                         |  |  |
| date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 August 2017                                             | inferred # of GW cycles<br>from 30 Hz to 2048 Hz**                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~ 3000                                         |  |  |
| time of merger<br>signal-to-noise ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12:41:04 UTC<br>32:4                                       | initial astronomer alert<br>latency*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27 min                                         |  |  |
| false alarm rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 1 in 80 000 years                                        | HLV sky map alert latency*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 hrs 14 min                                   |  |  |
| distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85 to 160 million<br>light-years                           | HLV sky area!<br># of EM observatories that                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28 deg <sup>2</sup>                            |  |  |
| total mass<br>primary NS mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.73 to 3.29 M <sub>a</sub><br>1.36 to 2.26 M <sub>a</sub> | followed the trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gamma-ray, X-ray,                              |  |  |
| secondary NS mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.86 to 1.36 Ma                                            | also coserved in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | infrared, radio                                |  |  |
| mass ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4 to 1.0                                                 | host galaxy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NGC 4993                                       |  |  |
| radiated GW energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | > 0.025 M <sub>a</sub> c <sup>2</sup>                      | source RA, Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13'09"48", -23'22'53"                          |  |  |
| radius of a 1.4 M <sub>e</sub> NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | likely s 14 km                                             | sky location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in Hydra constellation                         |  |  |
| effective spin<br>parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.01 to 0.17                                              | viewing angle<br>(without and with host<br>galaxy identification)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s 56° and s 28°                                |  |  |
| spin parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | unconstrained                                              | Hubble constant inferred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62 to 307 km s <sup>-1</sup> Mec <sup>-1</sup> |  |  |
| from speed of light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < few parts in 10 <sup>rs</sup>                            | identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |  |  |
| or liquin survive states and stat |                                                            | Inspers time togency taxes (btt), CVI My registry<br>(ML K = high base, KL > desta blain,<br>improved KLY - green,<br>optical access tocation - course-train<br>CVI-spacefulctions i save, SL M = electrosefulcti,<br>CVI-spacefulctions i save, SL M = electrosefulcti,<br>RL H = LIGD Interfacts. Kingstark, VM-Ng<br>Parameter acrypta are SCN, catchibe intervals.<br>"Intervalida is the time of company.<br>"Intervalida is the time of company.<br>"Intervalidation of the time of the<br>VCS catchibe region. |                                                |  |  |

# Multimessenger observations of GW170817

With 3 detectors, the GW observation pinned down the sky location and distance, enabling follow-up.





の へ 11/14

# Distance measurement and the Hubble Constant

- How was distance *d* measured for these events? Binary inspirals are *standard sirens*.
- Chirp rate informs us how fast system is losing energy intrinsic luminosity L.
- Observed amplitude tells us the apparent brightness *B*.
- To within angular factors (measured by 3 detectors)  $L/B = 4\pi d^2$ .
- Distance (40 Mpc) helped identify host galaxy, NGC4993.
- The cosmological recession velocity v of NGC4993 gives local expansion rate of universe (Hubble constant H<sub>0</sub>):

$$H_0 := \nu/d. \tag{1.2}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

Lecture 18: LIGO Detections

#### Hubble Constant measurement



# Models of the merger

- Although event was very nearby, gamma-ray burst was not exceptionally strong. Why?
- Tidal effects and problems with GW data led to uncertainties on individual masses.
- That, plus inclination uncertainty, make modelling of merger event uncertain.
- Standard model: bright gamma-ray burst broke through expanding cloud, we view from ~ 30° angle (cos ι = 0.87).
- Alternative: weak burst almost hidden by cloud, viewed from  $\sim 10^{\circ}$  angle (cos  $\iota = 0.98$ ).

#### Prospects for future observations

- LIGO and Virgo expected to resume late 2018, maybe range ×1.5, event rate ×3, vetoing glitches.
- Clarify origin of BBHs, statistics of BNS, better  $H_0$ .
- 2020: Japanese KAGRA (3km, cryo); LIGO, Virgo ×1.5?
- LIGO-India joins 2025(?)
- Improvements to LIGO continue with newer technologies.
- Long-range plans for LIGO (40-km detector) and Virgo (10-km underground triangle called Einstein Telescope).
- ESA's LISA detector launches 2034, opens up rich mHz GW frequency band – confusion-limited!
- Pulsar timing arrays (radio astronomy) could detect nHz GWs from SMBH binaries any time now.
- CMB polarisation telescopes looking for primordial GWs fundamental!