Formation and Coalescence of Cosmological Supermassive Black Hole Binaries in Supermassive Star Collapse

Christian Reisswig Caltech

C. D. Ott, E. Abdikamalov, R. Haas, P. Moesta, E. Schnetter

Formation and Coalescence of Cosmological Supermassive Black Hole Binaries in Supermassive Star Collapse

• Motivation Supermassive black holes, formation scenarios, supermassive stars

Computational Modeling Numerics, Multipatches

• Results Simulations, remnant properties, gravitational wave detectability

Cosmic Epochs

Galaxy A1689-zD1: ~700 million years after the Big Bang **Big Bang**

Radiation era

~300,000 years: "Dark ages" begin

~400 million years: Stars and nascent galaxies form

~1 billion years: Dark ages end

 10^9 Msol black hole at z=7

~9.2 billion years: Sun, Earth, and solar system have formed

~13.7 billion years: Present

Coloriesevolve

Motivation: 10⁹ Msol black hole at z=7 How is that possible?

e.g., Di Matteo et al 2008

Not enough time!

Motivation: 10⁹ Msol black hole at z=7 How is that possible?

Growth via accretion from a collapsed ~100Msol Pop III initial seed star?

 \rightarrow Accretion at Eddington rate, otherwise 10⁹ Msol BH not reached within 1 Gyr

Not possible! Strong radiative feedback limits growth rate!

Motivation: Supermassive Stars

Supermassive stars offer sufficient seed mass!

Originally suggested by Hoyle&Fowler 1963

Basic properties:

Mass $>10^4$ Msol

Very low metalicity

Sustained by hydrogen/helium burning

Radiation pressure dominated (Gamma=4/3)

Life < 1Myr

The Fate of Supermassive Stars

Cooling and contraction leads to onset of gravitational collapse

Depending on mass, rotation, metalicity (e.g. Montero et al 2012)

At T>10⁹K: e^+e^- pair creation \rightarrow loss of pressure

Thermal bounce due to hot CNO cycle

Collapse to supermassive black hole

Powerful supernova explosion ~10⁴B

Motivation: How to form a Supermassive Star?

Production site: Direct collapse of a primordial gas cloud with T_{vir} >10⁴K

We require rapid accretion rates ~0.1-1.0 Msol/yr:

- → No fragmentation allowed!
- → No pulsational instabilities allowed! (Inayoshi et al 2013)
- → Radiative feedback must be small! (Hosokawa 2012)
- → Angular momentum barrier must be overcome!
 - (e.g. Choi et al 2013)

No fragmentation if:

- → no molecular H₂ cooling (H₂ is dissociated in Lyman-Werner UV background)
- → supersonic turbulence

Conditions easier to realize than previously thought!

From Latif et al 2013

Computational Modeling

(Ideal) Computational Modeling

• Modeling on massively parallel computers

Adaptive mesh refinement, task-based parallelism, 3D Monte-Carlo radiation transport, Discontinuous Galerkin Methods...

EXTREMELY CHALLENGING!

Computational Modeling

• Modeling on parallel computers (256-512 cores)

Adaptive mesh refinement, multiblocks, high-resolution shock capturing finite volume scheme

Straight forward!

Multiblocks

• A set of curvilinear grid patches covers the domain

Grids can be adapted to problem symmetry

Useful patch system: Central Cartesian patch with AMR

Spherical grids for exterior region

Inflated-cube grid Radial stretching

Multiblocks

• Each grid patch is locally Cartesian

Generic Strategy

- Solve fluid evolution in local coordinates, curvature evolution in global coordinates
- Coupling in global tensor basis

Need Jacobian transformations to transform between local and global frame

Multiblocks: Spacetime Solver

• Finite difference derivatives approximated in local basis:

- Evolution equations are evaluated in global basis
- Can keep original Cartesian code; only need to replace derivative operators!

Pollney et al, Phys.Rev.D 83, 2011

Multiblocks: Hydro Solver

- Hydrodynamic equations are solved via HRSC finite volume method (GRHydro)
- GRHydro is based on uniform grids
 - solve hydro eqns. in local basis (where grids are uniform!)

Other modeling improvements

- Cell-centered AMR
- Flux conservation at AMR boundaries
- Multirate Runge-Kutta scheme (RK2-RK4)
- Enhanced piecewise parabolic, WENO5, MP5 reconstruction
- Z4c spacetime evolution system

Improved numerical efficiency / accuracy!

Reisswig et al 2013, PRD

Results Reisswig et al '13

-20 -10 0 10 20 X-Axis (M)

Initial Models

Rapidly differentially rotating marginally stable polytropes (quasi-toroidal configurations)

Central density: $\rho_c = 3.38 \times 10^{-6} M^{-2}$ Axes ratio: $r_p/r_e = 0.24$ Degree of differential rotation: A = 1/3

Initial Models

Rapidly differentially rotating marginally stable polytropes (quasi-toroidal configurations)

In physical units:

Example $M = 10^6 M_{\odot}$ supermassive star

Central density $\rho_c = 3.38 \times 10^{-6} M^{-2} \simeq 2.1 \,\mathrm{g \, cm^{-3}}$ Radius $R_e \simeq 1.2 \times 10^8 \,\mathrm{km} \simeq 0.8 \,\mathrm{AU}$

Unit time $T = 1M \rightarrow t \simeq 4.93 \,\mathrm{sec}$

Initial Models

Rapidly differentially rotating marginally stable polytropes (quasi-toroidal configurations)

Unstable to non-axisymmetric perturbations (Zink et al 2006,2007) \rightarrow fragmentation into self-gravitating, collapsing components

Density perturbation:
$$\rho_{\text{ini}} \rightarrow \rho_{\text{ini}} \left(1 + A_m r \sin(m\phi)\right)$$

$$A_m = 10^{-3}/r_e \approx 1.22 \times 10^{-5}$$

M1G1, M2G1: Collapse induced by reducing $K \rightarrow 0.999K$

M2G2: Collapse induced by reducing $\Gamma = 4/3 \rightarrow \Gamma = 1.33$

Motivated by pressure reduction due to electron-positron pair production at $T>10^9$ K

See e.g. Montero et al 2012

Model: Gamma=4/3, M=1

Youtube channel "SXS collaboration"

Model: Gamma=4/3, M=2

Youtube channel "SXS collaboration"

Model: Gamma=1.33, M=2

Youtube channel "SXS collaboration"

Properties

	M1G1	M2G1	M2G2
BH mass $M_{\rm BH}$ [M]	5.5	5.8	3.0 ± 0.1
		-	3.0 ± 0.1
		-	5.8 ± 0.2
BH spin $a_{\rm BH}^*$	0.9	0.9	0.7 ± 0.02
	-	-	0.7 ± 0.02
	-	-	0.9 ± 0.01
bar. disk mass M_{disk} [M]	1.3	1	0.7 ± 0.2
accretion rate \dot{M}	1.2×10^{-3}	2×10^{-4}	6.7×10^{-5}
rad. GW energy $E_{\rm GW}$ [%]	0.02	0.16	3.71

Convergence

GW detectability Can we see anything?

Frequency band: dHz – mHz (mass-dependent)

eLISA (mHz)

DECIGO, Big Bang Observer (dHz)

Supermassive stars have possibly existed beyond z>7

GW detectability

Supermassive stars have possibly existed beyond *z*>7

Need to compute luminosity distance D(z)

 Λ CDM-Cosmology (using latest Planck data):

Matter density $\Omega_m = 0.3175$ Dark energy density $\Omega_{\Lambda} = 0.6825$ Hubble constant $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$

GW detectability

Max detectability: $z = 25 (10^4 M_{\odot}), z = 16 (10^6 M_{\odot})$ Mean detectability: $z = 23 (10^4 M_{\odot}), z = 13 (10^6 M_{\odot})$

How likely is it?

We require...

- (i) Rapid differential rotation
- (ii) Pressure reduction
- (iii) M=2 perturbation
- → (i) primordial gas clouds usually carry substantial angular momentum
- \rightarrow (ii) At T>10⁹ K, electron-positron pair production sets in
- → (iii) perturbations are likely present, primordial cloud might develop M=2 structure
- \rightarrow (iii) M=1, M=2 grow at same speed and are fastest modes

Summary

- Supermassive stars give a viable pathway for seeding supermassive black holes at z>7
- Rapid differential rotation, reduced pressure, and m=2 perturbation lead to formation of a supermassive black hole binary system
- GWs can be seen up to z=25 (DECIGO, BBO)
- We have used a new multiblock scheme for more efficient 3D general relativistic hydro simulations
- Codes are publicly available as part of the EinsteinToolkit

Reisswig et al 2013, arXiv:1304.7787 Reisswig et al 2013, PRD Moesta et al 2013, arXiv:1304.5544