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Formation and Coalescence of 
Cosmological Supermassive Black Hole 
Binaries in Supermassive Star Collapse

● Motivation Supermassive black holes, formation scenarios, 
                                supermassive stars

● Computational Modeling Numerics, Multipatches

● Results Simulations, remnant properties, gravitational wave 
                        detectability



  

Motivation: Supermassive Stars

109 Msol black hole at z=7



  

Motivation: 109 Msol black hole at z=7
How is that possible?

e.g., Di Matteo et al 2008

Not enough time!



  

Motivation: 109 Msol black hole at z=7
How is that possible?

Growth via accretion from a collapsed ~100Msol Pop III initial seed star?

→ Accretion at Eddington rate, otherwise 109 Msol BH not reached within 1 Gyr

Not possible!  Strong radiative         
                       feedback
                       limits growth rate!



  

Motivation: Supermassive Stars
Supermassive stars offer sufficient seed mass!

Mass >104 Msol

Basic properties:

Very low metalicity

Originally suggested by Hoyle&Fowler 1963

Life < 1Myr

Sustained by hydrogen/helium burning 

Radiation pressure dominated (Gamma=4/3)



  

The Fate of Supermassive Stars

Collapse to supermassive black hole Powerful supernova explosion ~104B

Depending on mass, rotation, metalicity

Thermal bounce due to hot CNO cycle

Cooling and contraction leads to onset of gravitational collapse

(e.g. Montero et al 2012)

At T>109K: e+e-  pair creation
      → loss of pressure



  

Motivation: How to form a Supermassive Star?

We require rapid accretion rates ~0.1-1.0 Msol/yr:

Production site: Direct collapse of a primordial gas cloud with T
vir

>104K

From Latif et al 2013→ No fragmentation allowed!
→ No pulsational instabilities allowed!
           (Inayoshi et al 2013)
→ Radiative feedback must be small!
           (Hosokawa 2012)
→ Angular momentum barrier must be
     overcome!
           (e.g. Choi et al 2013)

No fragmentation if:

→ no molecular H
2
 cooling (H

2 
is

     dissociated in Lyman-Werner
     UV background)

→ supersonic turbulence

Conditions easier to realize than
previously thought!



  

Computational Modeling



  

(Ideal) Computational Modeling

Magneto-Hydrodynamics

General Relativity

Nuclear and Neutrino Physics

Boltzmann Transport Theory

Dynamics of stellar fluid

Gravity

Nuclear EOS, nuclear
(neutrino) interactions,
nuclear burning
Neutrino transport

●  Modeling on massively parallel computers

Adaptive mesh refinement, task-based parallelism, 3D Monte-Carlo radiation transport,
Discontinuous Galerkin Methods...

EXTREMELY CHALLENGING!



  

Computational Modeling

(Magneto-)Hydrodynamics

General Relativity

Gamma-law EOS

Boltzmann Transport Theory

Dynamics of stellar fluid

Gravity

Approximation to radiation 
pressure dominated fluid

Neutrino transport

●  Modeling on parallel computers (256-512 cores)

Adaptive mesh refinement, multiblocks, high-resolution shock capturing finite volume 
scheme

Straight forward!



  

Multiblocks
● A set of curvilinear grid patches covers the domain

         Grids can be adapted to problem symmetry

● Useful patch system: Central Cartesian patch with AMR

                                   Spherical grids for exterior region 
Inflated-cube grid Radial stretching



  

Multiblocks
● Each grid patch is locally Cartesian

● Solve fluid evolution in local coordinates, curvature 
evolution in global coordinates

● Coupling in global tensor basis

Need Jacobian transformations to transform between local and global frame

Generic Strategy



  

Multiblocks: Spacetime Solver
● Finite difference derivatives approximated in 

local basis:

● Evolution equations are evaluated in global basis
● Can keep original Cartesian code; only need to replace 

derivative operators! 

             Pollney et al, Phys.Rev.D 83, 2011



  

Multiblocks: Hydro Solver
● Hydrodynamic equations are solved via HRSC finite 

volume method  (GRHydro)
● GRHydro is based on uniform grids

              solve hydro eqns. in local basis (where grids are     
               uniform!)



  

Other modeling improvements

● Cell-centered AMR
● Flux conservation at AMR boundaries
● Multirate Runge-Kutta scheme (RK2-RK4)
● Enhanced piecewise parabolic, WENO5, MP5 

reconstruction
● Z4c spacetime evolution system 

Improved numerical efficiency / accuracy!



  

Convergence Tests...

Reisswig et al 2013, PRD



  

Results Reisswig et al '13

3 Models

M1G1 M2G1

M2G2



  

Initial Models
Rapidly differentially rotating marginally stable polytropes
                    (quasi-toroidal configurations)



  

Initial Models
Rapidly differentially rotating marginally stable polytropes
                    (quasi-toroidal configurations)

In physical units:



  

Initial Models
Rapidly differentially rotating marginally stable polytropes
                    (quasi-toroidal configurations)

Motivated by pressure reduction due to electron-positron 
pair production at T>109K

See e.g. Montero et al 2012

Unstable to non-axisymmetric perturbations (Zink et al 2006,2007)
      → fragmentation into self-gravitating, collapsing components



  

Model: Gamma=4/3, M=1

Youtube channel “SXS collaboration”



  

Model: Gamma=4/3, M=2

Youtube channel “SXS collaboration”



  

Model: Gamma=1.33, M=2

Youtube channel “SXS collaboration”



  

Comparison



  

Properties



  

Convergence



  

GW detectability
Can we see anything?

Supermassive stars have possibly existed beyond z>7

Frequency band:  dHz – mHz (mass-dependent)

eLISA (mHz) DECIGO, Big Bang Observer (dHz)



  

GW detectability
Supermassive stars have possibly existed beyond z>7



  

GW detectability

DECIGO, Big Bang Observer:



  

How likely is it?

● (i) Rapid differential rotation
● (ii) Pressure reduction
● (iii) M=2 perturbation

● → (i) primordial gas clouds usually carry substantial angular    

         momentum
● → (ii) At T>109 K, electron-positron pair production sets in
● → (iii) perturbations are likely present, primordial cloud might 

          develop M=2 structure
● → (iii) M=1, M=2 grow at same speed and are fastest modes

We require...



  

Summary

● Supermassive stars give a viable pathway for seeding supermassive 
black holes at z>7

● Rapid differential rotation, reduced pressure, and m=2 perturbation 
lead to formation of a supermassive black hole binary system

● GWs can be seen up to z=25 (DECIGO, BBO)

● We have used a new multiblock scheme for more efficient 3D general 
relativistic hydro simulations

● Codes are publicly available as part of the EinsteinToolkit

Reisswig et al 2013, arXiv:1304.7787
Reisswig et al 2013, PRD
Moesta et al 2013, arXiv:1304.5544
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