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10° Msol black hole at z=7

~9.2 billion years: Sun, Earth, and solar system have formed

~13.7 billion years: Present




10° Msol black hole at z=7

How Is that possible?
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e.g., Di Matteo et al 2008

Not enough time!




10° Msol black hole at z=7

How Is that possible?

Growth via accretion from a collapsed ~100Msol Pop Il initial seed star?

— Accretion at Eddington rate, otherwise 10° Msol BH not reached within 1 Gyr

Not possible! Strong radiative
feedback
limits growth rate!




Supermassive Stars

Supermassive stars offer sufficient seed mass!

Originally suggested by Hoyle&Fowler 1963
Basic properties:

Mass >10* Msol
Very low metalicity
Sustained by hydrogen/helium burning

Radiation pressure dominated (Gamma=4/3)
Life < 1Myr




Supermassive Stars

Cooling and contraction leads to onset of gravitational collapse

Depending on , rotation, metalicity (e.g. Montero et al 2012)

At T>10°K: e*e pair creation
— loss of pressure

Thermal bounce

Collapse to supermassive black hole Powerful supernova explosion ~10°B




How to form a Supermassive Star?

Production site: Direct collapse of a primordial gas cloud with Tvir>1O4K

We require rates ~0.1-1.0 Msol/yr:

— No fragmentation allowed! From Latif et al 2013
— No pulsational instabilities allowed!
(Inayoshi et al 2013) 1000 AU 1000 AU 1000 AU
— Radiative feedback must be small! 23
(Hosokawa 2012) ’ -
— Angular momentum barrier must be
overcome!
(e.g. Choi et al 2013)
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Density [g cm

No fragmentation if:

Density [g cm?]

- no molecular H, cooling (H,is

dissociated in Lyman-Werner
UV background)

o

— supersonic turbulence

Density [g cm

Conditions easier to realize than
previously thought!
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(Ideal) Computational Modeling

» Dynamics of stellar fluid

> Gravity

» Nuclear EOS, nuclear
(neutrino) interactions,
nuclear burning

» Neutrino transport

 Modeling on massively parallel computers

Adaptive mesh refinement, task-based parallelism, 3D Monte-Carlo radiation transport,
Discontinuous Galerkin Methods...

EXTREMELY CHALLENGING!



Computational Modeling

» Dynamics of stellar fluid

> Gravity

» Approximation to radiation
pressure dominated fluid

> Neutrino-transpert

 Modeling on parallel computers (256-512 cores)

Adaptive mesh refinement, multiblocks, high-resolution shock capturing finite volume
scheme

Straight forward!



Multiblocks

« A set of curvilinear grid patches covers the domain
—» Grids can be adapted to problem symmetry
» Useful patch system: Central Cartesian patch with AMR

Spherical grids for exterior region
Inflated-cube grid Radial stretching
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Multiblocks . e

 Each grid patch is locally Cartesian R,
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Generic Strategy o

 Solve fluid evolution in local coordinates, curvature
evolution in global coordinates

e Coupling in global tensor basis

Guvs Ly

Need Jacobian transformations to transform between local and global frame




Multiblocks: Spacetime Solver

* Finite difference derivatives approximated In
local basis:

ouY

« Evolution equations are evaluated in global basis

« Can keep original Cartesian code; only need to replace
derivative operators!

Pollney et al, Phys.Rev.D 83, 2011
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Other modeling improvements

Cell-centered AMR
Flux conservation at AMR boundaries
Multirate Runge-Kutta scheme (RK2-RK4)

Enhanced piecewise parabolic, WENO5, MP5
reconstruction

Z4c spacetime evolution system

—* Improved numerical efficiency / accuracy!



Convergence Tests...
IDON'T ALWAYS TESTMY

uTWHEN | DO 1D0 |ﬁ
PRODUCTION

Reisswig et al 2013, PRD




Results Reisswig et al '13
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Initial Models

Rapidly differentially rotating marginally stable polytropes
(quasi-toroidal configurations)

Central density: p, = 3.38 x 1079 M 2
Axes ratio: r,/r. = 0.24

Degree of differential rotation: A = 1/3

Y-Axis (M)

X-Axis (M)



Initial Models

Rapidly differentially rotating marginally stable polytropes
(quasi-toroidal configurations)

In physical units:

Example M = lOGM@ supermassive star

Central density p. =3.38 x 107°M 2 ~2.1gcm ™ °
Radius R, ~ 1.2 x 10°km ~ 0.8 AU

Unit time 1" = 1M — t~ 4.93 sec



Initial Models

Rapidly differentially rotating marginally stable polytropes
(quasi-toroidal configurations)

Unstable to non-axisymmetric perturbations (Zink et al 2006,2007)
- fragmentation into self-gravitating, collapsing components

Density perturbation: pini — pini (1 + A, sin(me))

Ay =103 /r, & 1.22 x 107°

M1G1, M2G1: Collapse induced by reducing K — 0.999K

M2G2: Collapse induced by reducing I' =4/3 — I' = 1.33

Motivated by pressure reduction due to electron-positron
pair production at T>10°K

See e.g. Montero et al 2012
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Y-Axis (M)

Gamma=4/3, M=2
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Y-Axis (M)

Gamma=1.33, M=2
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Properties

M1G1 M2G1 M2G2

BH mass Mpu |[M] 5.5 5.8 3.0+0.1
= g 3.0+ 0.1
= - 5.8 = 0.2
BH spin agy 0.9 0.9 0.7 & 0.02
- - 0.7 & 0.02
- - 0.9+ 0.01
bar. disk mass Mgisk [M| 1.3 1 0.7+ 0.2
accretion rate M 1.2x107°% 2x107* 6.7x 107"

rad. GW energy Ecw [%] 0.02 0.16 3.71
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GW detectability
Can we see anything?

Frequency band: dHz — mHz (mass-dependent)

. —

eLISA (mHz) DECIGO, Big Bang Observer (dHz)

Supermassive stars have possibly existed beyond z>7



GW detectability

Supermassive stars have possibly existed beyond z>7

Need to compute luminosity distance D(z)

ACDM-Cosmology (using latest Planck data):

Matter density €2,, = 0.3175
Dark energy density 2, = 0.6825
Hubble constant Hy = 70 km s~ Mpc™*

Hgoansion of the Universe

Y - Relic radiation (CMB)
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h(f) [Hz V7]

GW detectability
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DECIGO, Big Bang Observer:
Max detectability: z = 25 (10*My), z = 16 (10°M)
Mean detectability: z = 23 (10*My), z = 13 (10°My)



How likely Is 1t?
We require...
(1) Rapid differential rotation

* (II) Pressure reduction
o (ii1) M=2 perturbation

e — (i) primordial gas clouds usually carry substantial angular
momentum

e — (1) At T>10¢° K, electron-positron pair production sets in

e — (iii) perturbations are likely present, primordial cloud might
develop M=2 structure

e — (iii) M=1, M=2 grow at same speed and are fastest modes



Summary

Supermassive stars give a viable pathway for seeding supermassive
black holes at z>7

Rapid differential rotation, reduced pressure, and m=2 perturbation
lead to formation of a supermassive black hole binary system

GWs can be seen up to z=25 (DECIGO, BBO)

We have used a new multiblock scheme for more efficient 3D general
relativistic hydro simulations

Codes are publicly available as part of the EinsteinToolkit
Reisswig et al 2013, arXiv:1304.7787

Reisswig et al 2013, PRD
Moesta et al 2013, arXiv:1304.5544
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