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Motivation
to produce
waveform models:

The future of gravitational wave
astronomy depends on them!



Consider the dynamics
and
gravitational waveforms
of black-hole binaries



Masses: m;, m>
Spins: S/, S?

useful combinations:
M=m; + m;
qg=mz2/m

n=m; my /| M’

y =S/m?




Nonspinning
black holes

(Mass ratio 1:4, n = 0.16)



Gravitational wave signal:
quadrupole approximation




Gravitational wave signal:
quadrupole approximation
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Leading-order PN GW phasing:
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Depends on combination of total mass and mass ratio:

M = M773/5



Mass measurements
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Next PN order:
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Next PN order:

(SNR = 10)
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Aligned spins




Yet another order introduces spin, y:  Uh-oh!
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Exotic NS binary!?

Exotic NS + BH?
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Effective total spin

The PN phasing is dominated by a
weighted sum of the two spins:

ARG IR, 3800+ xa)

[Poisson and Will (1995), Ajith (2011)]



Merger and ringdown

Optimally oriented
' 50 Mo

_ equal-mass
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Ringdown waveform determined by
final mass and spin



Inspiral-merger-ringdown
model

® |nspiral: TaylorF2.

® Merger-ringdown:
- power series in f, fit to NR data
- final spin from formulas in literature

[Ajith, et. al,, (2009), Santamaria, et. al., (201 0)]



Orbital precession

Newtonian gravity:
L, Si, S2 remain fixed



Orbital precession

General relativity
(L, Si1,S2) precess around |



Precessional dynamics

Large separation




Example:
g=3,|S2| = 0.75
(in plane)




g=3,|S2| = 0.75 (in plane)
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Observer aligned
with |




g=3,|S2| = 0.75 (in plane)

Observer aligned
with |

M Observer inclined
/6 to J

M Observer inclined
n/3toJ

M Observer inclined
/2 toJ




How do we model
these complicated
waveform features!?

How do we cover
a seven-dimensional
parameter space
with NR simulations?



Untangling precession

The waveforms are much simpler if
viewed from a “co-precessing” frame

(Remain face-on to the binary)

[Schmidyt, et. al. (2010), Boyle, et.al. (201 1)]
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Just a second...
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g=3 precessing-binary
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in co-precessing frame
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Precessing-binary waveforms
(in the co-precessing frame)
are
almost identical to
equivalent non-precessing-binary
waveforms

[Schmidt, et. al. (2012)]



Corollary:

VVe can approximate
precessing-binary waveforms
by
“twisting up”
equivalent non-precessing-binary
waveforms

[Schmidt, et. al. (2012)]
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Precessing-binary waveform
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WVe still have to
model the precession angles!

We still have to deal
with a seven-dimensional
parameter space!



For non-precessing binaries we
used only one spin parameter, yef.

Can we use the same trick for precession?
i.e., replace
the four in-plane spin components
with one “precession spin’’?



A precession
parameter

® First consider one spinning BH
® spin rotates in the plane during evolution

® Only in-plane spin magnitude matters!



Double spins!?




Double spins!?

® Spins rotate at different rates

® Consider only the average spin in the plane, ™y,




Double spins!?

® Spins rotate at different rates

® Consider only the average spin in the plane, ™y,
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Compare precession angles




t[rad]

Compare precession angles
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Now we have only three key parameters

Parameter space has been simplified!

What about a model?



Orbital plane tilt, 1(t)

L(t) (or L(f)) can be calculated
from PN theory

L(t) mostly affects mode
amplitudes, not phases...



Precession angle, o(t)

® Strongly affects waveform phase

® For a single-spin model, to leading order:

® Use next-to-next-to-leading-order in spin-
orbit terms



Stationary phase
approximation

® Assume waveform amplitude varies slowly:

V(v) = 27 ft(v) — o(v)

® Precession angles also vary slowly

® See also [Lundgren and O’Shaughnessy (2013)]



Merger and ringdown

® | is approximately fixed

® Use final spin estimates [Barausse, et. al. (2009)]

Crude approximations:

® Use PN angles through merger/ringdown

® Use SPA through merger/ringdown.



Testing the moadel:

PN-NR hybrids

Hybridize e
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Also use NR initial parameters and
evolve PN backwards in time




Comparisons

Most extreme comparison:
q=3, xp=0.75,50 Mo [Hannam, et. al. (2013)]
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Now implemented
in LALSimulation
for all your
GW Astronomy
needs!



To do list

Perform simulations across (q, eff, Xp)

Calibrate model to simulations

Verify / improve assumptions

Improve merger/ringdown model
Parameter estimation capabilities/limitations

Revolutionise our understanding of the universe



