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What is MVA? CFRDYD

e Multivariate analysis is supervised machine learning.
o Used to separate weak signals from background events.

@ Suppresses information from large N dimensional event space
to a 1 dimensional real number.
o This “significance” is a measure of the likelihood of an event

being a signal.

October 11, 2013 4 /40

Adams, T. (Cardiff University) GW detection using MVA



1 1 : CARDIFF
Multivariate analysis methods

PRIFYSGOL

Toolkit for Multivariate Data Analysis (TMVA) C¥RDYD

o Integrated into the analysis framework ROOT.
@ Developed at CERN for high-energy physics.

e “In high-energy physics, with the search for ever smaller
signals in ever larger data sets, it has become essential to
extract a mazimum of the available information from the
data.”

o Large variety of multivariate classification algorithms.
o TMVA - Users Guide
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Available classifiers in TMVA (CARDYD
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What is a BDT? QFRDYD

@ Decision trees consist of a series of
binary decision nodes.

e Each node applies a threshold to a
single variable, selected to best
discriminate signal from
background.

o This Split'résults in two branches,
each contalnmg a subset of the
CVENUSHeT . =
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What is a BDT? QRO

@ The process then repeats, with a
new split criterion being
determined at each node to further
separate signal from background.

e The splitting process ends once a
minimum number of events has
been reached within a node, which
then becomes a leaf node.

o Leaf nodes are labelled as either
signal or background depending on
the class of the majority of events
that fall within it.
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How we use BDTs

o We have known signal (injection) and background events.

@ These events are split randomly into two sets, one for training
the classifier and the other for testing its performance.

o This split ensures that the testing produces an unbiased
estimate of the classifier performance.

o The training events are passed through the BDT to set up
the tree structure.
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o The testing events are then passed through the trained BDT
and each testing event is assigned a MVA significance value.

e Events with high values of significance are more likely to be
signals.

o Events with small values of significance are more likely to be
background.
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We need more wood CARDYD

o Individual decision trees are susceptible to statistical
fluctuations within the set of training events used to derive
the tree structure.

o To avoid over training, a “forest” of decision trees are used,
each generated using a random subset of the training events.

o The final classification of events is determined by a majority
vote from the classifications of each individual tree within the
forest.
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@ Another procedure to statistically stabilize the classifier is

“boosting” .

e During training, signal and background events that are
misclassified by one tree are given increased weight when
constructing the next tree in the forest.

@ We use the default boosting method in TMVA.

October 11, 2013 14 / 40

GW detection using MVA

Adams, T. (Cardiff University)



CARDIFF

UNIVERSITY
PRIFYSGOL

Tests
CAERDYD

Externally triggered burst searches

Externally triggered burst searches
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X-PIPELINE CARRDYD

o Externally triggered coherent analysis for gravitational wave

bursts.
o Identification of weak signals in background detector noise.
o Current noise rejection tests are based on the analysis of a
relatively small number of measured properties of the
candidate signal, typically correlations between detectors.
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Status of current analyses

o The sensitivity of such searches is often critically limited by
non-Gaussian noise fluctuations that are difficult to
distinguish from real signals.

o Posing a key problem for transient gravitational-wave

astronomy.
o We have integrated MVA classifiers into X-PIPELINE to

address this problem.
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@ MVA techniques probe the full space of measured properties
of events in an attempt to maximize the power to accurately
classify events as signal or background.

o The benefit of using MVA techniques to obtain better
discrimination between signal and background events has
been shown in high-energy physics.

o Here we apply this to the similar problem we have for a
gravitational wave burst search. :
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BDT details QRO

e From tuning the classifier parameters an improvement of
~ 10% was possible.

o For simplicity we use the default BD'T parameters.

e Signal events are software injections.

e Background events are off source noise events.
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X-PIPELINE event variables CARDYD

@ 15 event properties.

@ Variety of energy measures.

o Combinations of these which are equivalent to X-PIPELINE
cuts.

o Time-frequency information (duration, bandwidth, and pixel
number).
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Analysis flow diagram CARDYD

o Standard X-PIPELINE analysis is

performed on data for a
(simulated) GRB trigger (grey

only).

@ The BDT classifier is then applied
to the events recorded by
X-PIPELINE to re-evaluate the
significance of each event (include

d . Sensitivity calculated from
re . i analysis of injections and
i triggers.

X-pipeline trigger
generation

TMVA assigning MVA value

Determine veto cuts and
apply to triggers.
uning of pipeline

Webpage
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o Analysis sensitivity is
characterized by the minimum GRB detcie by satel
injection amplitude at which
> 50% of simulated signals survive
analysis cuts and have significance
greater N% of the background.

e Default is greater than 99% of
background, giving a FAP
p < 0.01. - JEER

triggers.

!

Data acquisition from
detectors

X-pipeline trigger
generation

TMVA assigning MVA value

Determine veto cuts and
apply to triggers.
uning of pipeline

o The relative performance is
measured as the ratio of the
standard X-PIPELINE and BDT

results.

Webpage
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Multivariate-X-PIPELINE results
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o Baseline analysis using parameters of GRB 060223 (time, sky

position).
o Using the same parameters and process as S6 VSR2-3 GRB

analysis.
o Training and testing using CSG and BNS waveforms.

GRB 060223A (default) I = csc
sky position 1 | 7 Chirplet
@ WNB

large sky uncertainty 1 | N R
large sky uncertainty 2 |
highly non-Gaussian |
Gaussian [N
two-waveform robustness I 1
four-waveform robustness IR |
detection challenge [
1 3 15 16 17 18 L9

09 10 LI 12 13 14
X-Pipeline ... / BDT h,.,
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o To verify that the results of the MVA-X-PIPELINE
comparison are robust, we repeat analysis for a range of

difference sky positions.
e Sky positions were chosen to cover a range of different

relative detector network sensitivities.

GRB060223A (defauit) NN == csc ||
[ Chirplet

sky position 1 [
sky posiion 2 N ==
sky positon 3 I s
sky position 4 I 11
large sky uncertainty 1 |
large sky uncertainty 2 [N
highly non-Gaussian | NN

Gaussian [N

two-waveform robustness I 1

four-waveform robustness IS I
detection challeng?’ .

1.0 1.1 1.2 1.3 1.4 15 1.6
X-Pipeline i,/ BDT h,,
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Large position uncertainty

o GRBs detected by the GBM instrument on the Fermi
satellite have relatively large sky location uncertainty, ~ 10°.

o We test the performance of the MVA analysis in this scenario
using two different sky positions with sky position
uncertainties of ~ 9°.

GRB 060223A (default) [ = Csc
sky posiion 1 I T Chirmet
sky position 2 [ == WNB
sky position 3 | == BNS
sky position 4 I 11

large sky uncertainty 1 | N R

large sky uncertainty 2 [

highly non-Gaussian [ N NN
Gaussian [N
two-waveform robustness I 1
____Deom— |

four-waveform robustness

detection challenge:
09 10 L1

1.2 1.3 1.4 15 1.6
X-Pipeline i,/ BDT h,,

Adams, T. (Cardiff University) GW detection using MVA October 11, 2013 30 / 40



CARDIFF
Results ~avcor

Highly non-Gaussian background CFRDY®

o Noise events can be introduced to the detector by a wide
range on known and unknown sources.

o These “glitches” are artefacts of the detectors and can be
difficult to distinguish from real weak signals.

o To test the performance of the MVA analysis, we analyse a
trigger that is at a time of unusually poor data quality.

GRB060223A (defaul) N == csc |
sky position 1 | [ Chirplet
sky position 2 [ == WNB
sky position 3 | . BNS
sky position 4 I

large sky uncertainty 1
large sky uncertainty 2 |
highly non-Gaussian [ N NN
Gaussian NN
two-waveform robustness I |
four-waveform robustness NG NN
detection challengtl-)’ .

1.0 1.1 1.2 1.3 1.4 1.5 1.6
X-Pipeline h, ./ BDT h,

5
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Gaussian background

o Best-case scenario test. ;
e Performance of the MVA analysis was tested using simulated
Gaussian noise with a spectral density coloured to match

that of the real detector noise at the time of GRB 060223A.

GRB060223A (defaut) NI == csc ||
[ Chirplet

sky position 1 |

sky position 2 | == WNB
sky position 3 | - BNS
sky position 4 I T

large sky uncertainty 1 |
large sky uncertainty 2 [
highly non-Gaussian |
Gaussian I
|

two-waveform robustness
four-waveform robustness IS I
detection challenge:
09 10 LI 12 13 14 15 16
X-Pipeline h,.. / BDT h,.,
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e Important to verify that MVA is able to detect waveforms
with morphologies that differ from those used for training.

e two waveform test - Training with CSG and BNS waveforms,
testing with CSG, BNS, chirplet, and WNB waveforms.

o four waveform test - Training and testing with CSG, BNS,
chirplet, and WNB waveforms.

GRB 0602234 (defout) I (= cs
sky position 1 = onirplet
sky position 2 [ == WNB
sky position 3 | . BNS
sky position 4 I N

large sky uncertainty 1 | R

large sky uncertainty 2| R

highly non-Gaussian | N
Gaussian I
two-waveform robustness I |
four-waveform robustness SN NN

detection challenge:
09 10 LI 1

2 1.3 1.4 1.5 16 1.7 18 19
X-Pipeline h,, / BDT h,,

Adams, T. (Cardiff University) GW detection using MVA October 11, 2013 33 / 40



CARDIFF
ReSUItS UNIVERSITY

PRIFYSGOL

Waveform robustness CARDYD

o two waveform test - WNB not detectable by X-PIPELINE due
to uncorrelated polarzations for WNB.

@ MVA can detect these signals, albeit with sensitivity half of
in four waveform test.

o four waveform test - Reduction in CSG/ chriplet performance
due to inclusion of WNB in training, classifier must find
compromise.

GRB 060223A (default) I = csc

sky position 1 | Chirplet
sky position 2 | == WNB
sky position 3 [ . BNS
sky position 4 I

large sky uncertainty 1 | N R
large sky uncertainty 2 |
highly non-Gaussian |
Gaussian I
two-waveform robustness I 1
four-waveform robustness IS NN

detection challenge:
0.9 L0 Ll

1.2 1.3 1.4 15 1.6
X-Pipeline £,/ BDT h,,
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o Typically analyse 100-150 GRB triggers.

e A 30 significance with 150 trials requires p < 2 x 107> for an
individual event.

o We generate extra background samples and tune the
background rejection tests to yield the lowest minimum
injection amplitude at a FAP of p = 107°.

GRB 0602234 (defout) I | 5o |
sky position 1 | [ Chirplet
sky position 2 [ == WNB
sky position 3 | . BNS
sky position 4 I

large sky uncertainty 1 I

large sky uncertainty 2| R
highly non-Gaussian | N
Gaussian I
two-waveform robustness I |
four-waveform robustness NI N
detection challenge [
u. L1

Yy LU n

1.z L3 1 1.0 1.6
X-Pipeline h,, / BDT h,,
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GRB 060223A (default) '  [mmm csG
sky position 1 [ Chirplet
sky position 2 :
sky position 3
sky position 4

large sky uncertainty 1

large sky uncertainty 2
highly non-Gaussian
Gaussian

two-waveform robustness

four-waveform robustness
detection challenge
0

1.2 13 14 15 16 1.7
X-Pipeline h,; / BDT h,.
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mamber of pi
duration
dwidth
E)|
In(Liant) = I )
1n(Fa) = In(Ey)

] 00 T30
Number of nodes.
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and I’'m done QRO

o Shown that MVA offers consistent 1mprovement in sen81t1v1ty
to some signal types. -

o Improvement holds regardless of sky position, sky locat1on
uncertainty, data quality, and network of detectors. -

o Importantly, MVA is always at least as sensitive as the
standard X-PIPELINE analysis. : o

o Benefits of the MVA analysis extend down to false alarm :
rates sufficient for 30 detections in GRB triggered searches.

o The results presented here indicate that MVA techniques
may be valuable for improving the sensitivity of searches for
unmodelled gravitational-wave bursts.
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