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Introduction

•Accurate GW models are being developed and improved in order to dig out the GW signal                  !

             from the noise    .h(�0) n

•Markov chain Monte Carlo (MCMC) or similar techniques, like nested sampling, are employed to:!

 Assess the relative likelihood of different waveform models matching the data (the likelihood 

of a true detection vs a false noise trigger)!

Estimate the GW parameters by computing the posterior distribution function (PDF)

s = h(�0) + n h(�0)
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•Parameter estimation requires repeated evaluations of the likelihood across the parameter space.

Match filtering techniques: The detector signal (GW + noise) is correlated against single GW 

templates over long observation times (continuous GW signals) and over a large parameter space      !

(searches target unknown systems).

�0

ha |b i = 4<
Z 1

0

ã(f)b̃⇤(f)

S̃n(f)
df

p(s|�) = p(n = s� h(�))

/ exp [�hn|ni /2]Gaussian noise

Introduction

•MCMC techniques used to compute PDF are computationally expensive - large number of waveforms 

are generated and filtered against the data
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FIG. 7: Integration error (26) versus number of ROQ nodal
points (m) for 10, 000 randomly selected values of �. The solid
black curve depicts the noise-free case s = h and the last data
point

�
m = 54,�m ⇡ 3⇥ 10�8

�
corresponds to the rule used

in Fig. 8. The blue and red curves show the maximum and
minimum, over 100 realizations of pure noise data, s = n, of
the error maximised over all parameter values �. Note that
the ROQ shows exponential convergence with respect to the
number of ROQ nodes, even for pure noise data.

interpolate.

D. Computing the likelihood

In order to evaluate the likelihood we compute Eq. (3)
as

hs|si+ hh (�) |h (�)i � 2<hs|h (�)i , (31)

where the last term is handled with the ROQ rule (25)
and the first term needs to be computed once. In the
case that the data stream s(t) contains a sine-Gaussian
burst-waveform (7) and white noise n(t) (see Sec.II), we
can compute a closed-form expression for the norm,

hh (�) |h (�)i = 4A2↵
p
⇡
⇣
1� e�4⇡2f2

0↵
2
⌘
, (32)

where f
min

= 0 and f
max

= 1 have been assumed.
When closed-form expressions are unavailable we have
a few options. One possibility is to build an ROQ rule
for the norm, which requires additional o✏ine computa-
tions. Here we consider an alternative. Notice that the
norm

hh (�) |h (�)i =
mX

i=1

c2i (33)

is expressible in terms of the EIM coe�cients ~c =
A�1~h. Explicit computation of these coe�cients carries
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FIG. 8: Errors in computing the correlation between the data
stream s and the model waveform h (see Sec.II) hs |h(�, tc) i
using an ROQ rule built for tc = 0 with accuracy better than
⇠ 10�6. Empirically we find that this rule continues to work
well for non-zero values of tc. Looking ahead to Sec. VI we
anticipate evaluating the likelihood function for tc  0.5 sec.

an O(m2) cost, which is larger than the ROQ count of
O(m). However, in many applications of interest the
waveforms themselves are very expensive to compute and
so this cost will still be much smaller than the full likeli-
hood evaluation.

E. ROQ cost and e�ciency

Here we comment on ROQ o✏ine and startup costs as
well as the expected speedup for likelilood evaluations.
To find m basis functions we use the greedy algorithm

described in Appendix A. The asymptotic cost of this
algorithm applied to a training set with M elements is
O (NMm)[58]. Furthermore, the algorithm is trivially
parallelized making large M problems accessible. Once
the basis is built, an EIM algorithm is used to identify
the ROQ points. As described in Appendix B, the cost
of the EIM is dominated by inversion of a full matrix; in
particular the matrix defined in Eq. (18) for the first i
basis/points ( see algorithm 2 in Ref. [22] for a equivalent
algorithm which utilizes a lower triangular matrix). The
asymptotic cost of Alg. 2 and its modified equivalent are
O �

m4 +Nm2

�
and O �

m3 +Nm2

�
respectively.

When considering startup costs, we note that the ma-
trix A is data-independent and can be inverted o✏ine. To
compute ROQ weights first i) m inner products between
the data and all basis are computed from Eq. (23) and
finally ii) the matrix-vector product (24) is performed.
Whence the overall startup cost is O �

mN +m2

�
.

We now compare the cost of full and compressed
(ROQ) overlap evaluations, respectively Eq. (21) and
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Introduction
Example GW100916: 

Hanford Livingston Virgo

•Parameter estimation was performed using multiple algorithms and multiple waveform 
families - took several months!!

•In aLIGO era, expect/hope for ~10s of signals a year - need faster follow-up.!

•Various methods - SVD of waveform space with interpolation, neural network training or 
reduced order quadrature (ROQ).

arxiv:1304.1775

•Blind injection designed to test the analysis pipelines.
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Reduced Order Modelling

•Usually standard interpolation is employed to represent the GW with a reduced amount of points

• What we want: Compression of the data without loss of information - less computational operations.
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Reduced Order Modelling

•Usually standard interpolation is employed to represent the GW with a reduced amount of points

Chapter 2

The Empirical Interpolation

Method

The EIM as it was presented in [15] is the cornerstone of this thesis. In this chapter
we will present the EIM and some of its properties. In the next chapter we will
present our own formulation of the EIM that will be convenient when applying the
EIM to various applications in later chapters.

2.1 Introduction

Interpolation is used to approximate a function f on a domain �, f : � æ R by
requiring the approximation, IM [f ] : � æ R, to be exact in a set of M interpolation
points {xi}M

i=1, xi œ �

f(xi) = IM [f ](xi) i = 1, . . . , M. (2.1)

Interpolation can be useful because the underlying function is not known in all
points, or because approximating the function using well known functions such as
polynomials is more convenient. In short, interpolation is about finding a good
way to represent the underlying data. Polynomials are excellent to approximate
analytical functions. For well chosen interpolation points, the error decreases ex-
ponentially with the number of interpolation points [4, 22]. They are also easily
integrated and di�erentiated which we will exploit when developing quadrature
rules and solving partial di�erential equations later in this thesis. More generally
we will approximate the function f by finite sums of well chosen, pre-defined basis
functions qi,

5

Figure 1.1: Interpolation (solid blue line) of a function f in the domain � = [≠1, 1].
The interpolation is required to be exact in the interpolation points (red dots), i.e.
I[f ](xi) = f(xi) for all interpolation points xi, i = 1, . . . , M .

are analytical. A serious limitation, however, is that the GLL points are only
defined on the line, the square and other tensor product domains. If GLL points
are to be used in general domains, the problem must be mapped from the actual
domain over to a reference domain where the GLL points are defined. This can be
tedious or impractical.

An alternative to using high order polynomials as basis functions is to use piecewise
linear functions. The interpolation points might be equidistant or even arbitrary.
The trapezoidal rule for numerical integration, and the linear finite element method
to solve partial di�erential equations, can both be constructed in this way. While
these methods are more flexible in terms of what domains they can handle, their
convergence rates are algebraic (as low as O(M≠2), using M sample points, for
the trapezoidal rule [13]). Hence, traditional methods involves a trade-o� between
convergence rates and what domains they can easily handle.

The Empirical Interpolation Method (EIM) [15] was recently proposed to use as a
general multipurpose interpolation procedure. The EIM constructs both the inter-
polation points, called magic points, as well as the accompanying basis functions.
The EIM does not claim to be optimal, but it achieves exponential convergence
rate for analytical functions, and it works on non-standard domains such as trian-
gles and hexagons. Furthermore, the hierarchical nature of the EIM lets us add
an interpolation point without having to recompute all the existing points. This is
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Chapter 2

The Empirical Interpolation

Method

The EIM as it was presented in [15] is the cornerstone of this thesis. In this chapter
we will present the EIM and some of its properties. In the next chapter we will
present our own formulation of the EIM that will be convenient when applying the
EIM to various applications in later chapters.

2.1 Introduction

Interpolation is used to approximate a function f on a domain �, f : � æ R by
requiring the approximation, IM [f ] : � æ R, to be exact in a set of M interpolation
points {xi}M

i=1, xi œ �

f(xi) = IM [f ](xi) i = 1, . . . , M. (2.1)

Interpolation can be useful because the underlying function is not known in all
points, or because approximating the function using well known functions such as
polynomials is more convenient. In short, interpolation is about finding a good
way to represent the underlying data. Polynomials are excellent to approximate
analytical functions. For well chosen interpolation points, the error decreases ex-
ponentially with the number of interpolation points [4, 22]. They are also easily
integrated and di�erentiated which we will exploit when developing quadrature
rules and solving partial di�erential equations later in this thesis. More generally
we will approximate the function f by finite sums of well chosen, pre-defined basis
functions qi,
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2.1. Introduction

f(x) ¥ IM [f ](x) =
Mÿ

i=1
—iqi(x). (2.2)

If the basis functions are 1 in one of the interpolation points and 0 in the others, then
the basis is said to be nodal, i.e. if qi(xj) = ”ij , where ”ij is the Kronecker delta.
This is called Lagrangian interpolation and is a classical way of approximating
functions.

Finding the best interpolation points xi and basis functions qi to minimize the
error is in general an open problem. One approach, using equidistant interpolation
points and a nodal piecewise linear basis function, is shown in Figure 2.1. Another
approach, using Gauss-Lobatto Legendre (GLL) points and nodal polynomial basis
functions, is shown in Figure 2.2. As mentioned previously, the piecewise linear
basis functions can be applied to a variety of domains, but typically yield algebraic
convergence. Using polynomial basis functions over the GLL points yields exponen-
tial convergence for analytical functions, but only works on simple domains. The
Empirical Interpolation Method (EIM) was proposed in [15] to find interpolation
points and basis functions for general problems. It does not claim to be optimal,
but works well in practice and can be shown to be well behaved under certain cir-
cumstances. Figure 2.3 shows interpolation points and a polynomial basis function
chosen by the EIM.

Figure 2.1: An example of a nodal basis function q(x) (solid line) that is piecewise
linear. Equidistant interpolation points are used (red dots).
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Approximates the function      by finite sums of well chosen, pre-defined basis functions qi,

Need to find the points xi and basis functions qi, to 

minimise the approximation error.

• What we want: Compression of the data without loss of information - less computational operations.
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Reduced Order Modelling

•Usually standard interpolation is employed to represent the GW with a reduced amount of points
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are analytical. A serious limitation, however, is that the GLL points are only
defined on the line, the square and other tensor product domains. If GLL points
are to be used in general domains, the problem must be mapped from the actual
domain over to a reference domain where the GLL points are defined. This can be
tedious or impractical.

An alternative to using high order polynomials as basis functions is to use piecewise
linear functions. The interpolation points might be equidistant or even arbitrary.
The trapezoidal rule for numerical integration, and the linear finite element method
to solve partial di�erential equations, can both be constructed in this way. While
these methods are more flexible in terms of what domains they can handle, their
convergence rates are algebraic (as low as O(M≠2), using M sample points, for
the trapezoidal rule [13]). Hence, traditional methods involves a trade-o� between
convergence rates and what domains they can easily handle.

The Empirical Interpolation Method (EIM) [15] was recently proposed to use as a
general multipurpose interpolation procedure. The EIM constructs both the inter-
polation points, called magic points, as well as the accompanying basis functions.
The EIM does not claim to be optimal, but it achieves exponential convergence
rate for analytical functions, and it works on non-standard domains such as trian-
gles and hexagons. Furthermore, the hierarchical nature of the EIM lets us add
an interpolation point without having to recompute all the existing points. This is
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i=1, xi œ �

f(xi) = IM [f ](xi) i = 1, . . . , M. (2.1)

Interpolation can be useful because the underlying function is not known in all
points, or because approximating the function using well known functions such as
polynomials is more convenient. In short, interpolation is about finding a good
way to represent the underlying data. Polynomials are excellent to approximate
analytical functions. For well chosen interpolation points, the error decreases ex-
ponentially with the number of interpolation points [4, 22]. They are also easily
integrated and di�erentiated which we will exploit when developing quadrature
rules and solving partial di�erential equations later in this thesis. More generally
we will approximate the function f by finite sums of well chosen, pre-defined basis
functions qi,
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Approximates the function      by finite sums of well chosen, pre-defined basis functions qi,

Need to find the points xi and basis functions qi, to 

minimise the approximation error.

• What we want: Compression of the data without loss of information - less computational operations.

Polynomial basis functions, ex. Gauss-Lobato Legendre 

(GLL), yields exponential convergence for analytical functions 

well approximated by polynomials, and sampled at  GLL 

points. Not true in GW data analysis applications.
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Reduced Order Modelling

• Reduced basis (RBs) framework for modelling space: Efficiently deals with 

parametrised problems, in our case given by GW waveforms

Training space (template bank) covers 
a given range of parameters

The GWs of the training space can be 
represented with a basis of waveform 
templates - the RBs.

{hi(t;�i)}Mi=1

{hi(t;�i)}ni=1



Priscilla Canizares Cardiff University���9

Ex. Non-spinning post-Newtonian (PN) waveforms (know in closed form) used for searches of inspirals.  

t

BNS: Binary Neutron Stars , BBH: Binary Black Holes!
TM = Template Metric (standard approach)

Number of RB is significantly smaller

The number of RB marginally increases when adding new parameters
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Representation error converges exponentially!
 with the size of basis

Reduced Basis
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Start with a set of training templates                           evaluated at sample of  (training) points               . 

Output                  the RB basis                and the associated points                .!

 The first basis template is chosen at random for some j!

Iterate: For j=2 to m!

• Compute                                            , the projection of the!

 remaining waveforms in the training set into the current reduced basis.!

• Find                                                           , the template in the training set with the largest (pointwise) 

representation error.!

• Set                                  and orthonormalize!

•  Increment j and repeat.!

Stop when maximum representation error is less than a threshold    

Offline

m ⌧ M

{�i}Mi=1

1) Greedy algorithm to build a RB
Reduced Basis

{hi(f ;�i)}Mi=1

e1 = hj(f ;�j)

Hj�1
k ⌘ Pj�1[hk(f ;�k)]

K = argmax||Hj�1
k � hk(f ;�k)||2

ej(t) = hK(f ;�K)

{ei}mi=1

{hi(t;�i)}Mi=1
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Reduced Basis

Sine-Gaussian burst model used to represent generic burst source, e.g. supernova. The waveforms are 

described by four parameters !

!
!
!
!

Example: Sine-Gaussian burst waveform

A,↵, f0, tc

•The most important ones are the burst width and frequency.

3

ter space, but the proposed ROQ can use any choice
of a “good” basis.

2. Identify the empirical interpolation points
associated with the above basis. O✏ine
stage.

Described in Sec. IV. This step provides, through
a greedy approach, the set of most relevant points
in the physical dimension(s), and a nearly optimal
global interpolant associated with the basis con-
structed in Step 1. These EIM nodes are to be
used as integration points in the ROQ rule.

3. Given any stream of data, construct the
weights of the ROQ. Startup stage.

Described in Sec. V. These weights are linear com-
binations of correlations between the data and the
basis elements of Step 1.

4. Fast likelihood evaluations. Online stage.

Described in Sec. VI. The ROQ uses the nodes com-
puted in Step 2 and the weights computed in Step
3 to perform fast and accurate evaluations of over-
laps between the data and any waveform within the
model.

Section VI discusses the results of putting the above
pieces together into MCMC simulations for parameter es-
timation of mock data corresponding to the burst model
family of waveforms described below in Eq. (7). From
these simulations, in particular, we quantify the signifi-
cant speed-ups that are obtained even for such a simple
GW model when using the proposed ROQ.

III. REDUCED ORDER MODELING

Roughly speaking, ROM deals with data which can be
represented by fewer degrees of freedom than those of
the full problem with or without loss of accuracy. For
a given problem there are many available methods for
revealing a reduced representation. Classical methods
such as Principal Component Analysis, Proper Orthogo-
nal or Singular Value Decompositions (SVD) [29], which
are related to each other, were introduced as early as the
1800’s (see [30] for a review of their history) and reveal
low-rank approximations within existing data. Other ap-
proaches such as Reduced Basis (RB) (see, as a sample,
[31–38] or [39] for a recent review), are specifically de-
signed for parametrized problems whose solution is ex-
pensive to evaluate but also carry advantages when deal-
ing with “big data” problems (e.g. if the data cannot fit
into memory or the SVD cost becomes prohibitive).

Both RB-greedy and SVD are projection-based ROM
algorithms. If the waveforms are known at the training
points

T := {�i}Mi=1

with �i some parametrization of the samples, a
projection-based method identifies a basis {ei}mi=1

such
that

h(·;�) ⇡
mX

i=1

ci(�)ei(·) , for � 2 T (5)

with m  M and where the coe�cients ci are given by
Eq.(A5) (see Appendix A for more details). If the prob-
lem is amenable to ROM, then m < M or even m ⌧ M .
To be more concrete, in the GW case � would represent

the (intrinsic and/or extrinsic) parameters of the prob-
lem, and M the number of available parameter samples;
say, the number of waveforms in a catalog or even the con-
tinuum, M ! 1. A generic waveform with associated
parameter � would be a function of time or frequency,

h = h(t;�) or h = h(f ;�) .

In what follows, we will refer to � as the parameter di-
mension and f or t as the physical one.

A. Generating a basis

Suppose for any � the GW template h(·;�) has an
accurate approximation of the form (5) in some basis
{ei}mi=1

. Recent work [40–43] has shown that for fixed
but arbitrary physical and parameter ranges, a small
number of basis functions is su�cient to accurately rep-
resent any waveform of the same physical model in that
range. Furthermore, when the basis is generated through
a RB-greedy algorithm (described in Appendix A), the
approximation error is guaranteed to yield a nearly op-
timal solution of the so-called n-width approximation
problem [44, 45]. In the cases of interest this means ex-
ponential convergence of the representation error defined
below in Eq. (6) with respect to the number of basis
functions, resulting in a very compact basis. In addition,
the number of basis elements often exhibits negligible in-
crease as the dimensionality of the problem grows [42].

Of the basis set {ei(·)}mi=1

we require m to be small
and the approximation to satisfy

�m := max
�

min
ci2C

�����h(·;�)�
mX

i=1

ci(�)ei(·)
�����

2

 ✏ , (6)

where ✏ is a user defined bound for the error (in our cases,
typically ⇠ 10�12, see for example Fig. 2), the coe�cients
{ci} are chosen so as to optimize the approximant (see
Appendix A), and the largest error in the parameter re-
gion of interest is taken. That is, �m quantifies the error
of the “worst best” approximation by the basis.

Many possible basis choices, including traditional
ones such as Chebyshev polynomials or Fourier basis,
could satisfy the above required criteria. In practice,
application-specific bases usually provide better accuracy
for a given m and also lead to a well-conditioned global

54 basis 	


out of 180 templates
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•Not all linear combinations of basis templates represent physical waveforms.!

•Must restrict evaluation of likelihood/posterior to physically reasonable combinations.!

•On the fly projection of each waveform onto basis is expensive - lose savings.!

•Interpolation between points in parameter space can be used, but only in small 

parameter regions.

Caveats

Reduced Basis
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•Empirical interpolation method (EIM) employed to approximates 

parametrised functions                as

where       is        or µ t

Chapter 2

The Empirical Interpolation

Method

The EIM as it was presented in [15] is the cornerstone of this thesis. In this chapter
we will present the EIM and some of its properties. In the next chapter we will
present our own formulation of the EIM that will be convenient when applying the
EIM to various applications in later chapters.

2.1 Introduction

Interpolation is used to approximate a function f on a domain �, f : � æ R by
requiring the approximation, IM [f ] : � æ R, to be exact in a set of M interpolation
points {xi}M

i=1, xi œ �

f(xi) = IM [f ](xi) i = 1, . . . , M. (2.1)

Interpolation can be useful because the underlying function is not known in all
points, or because approximating the function using well known functions such as
polynomials is more convenient. In short, interpolation is about finding a good
way to represent the underlying data. Polynomials are excellent to approximate
analytical functions. For well chosen interpolation points, the error decreases ex-
ponentially with the number of interpolation points [4, 22]. They are also easily
integrated and di�erentiated which we will exploit when developing quadrature
rules and solving partial di�erential equations later in this thesis. More generally
we will approximate the function f by finite sums of well chosen, pre-defined basis
functions qi,

5

The EIM is an algorithm for constructing interpolation points for a given set 

of basis functions iteratively,

Offline
Empirical Interpolation
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Offline
2) Empirical interpolation method: Find the RB evaluation points
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5

EIM is deals with parametrised problems characterised by non-polynomial bases. !

The set of EIM points is nested and hierarchical,!

Easily handles unstructured meshes in several dimensions.
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We impose that the value of the  RB-waveform at a given (interpolation) points is the same that the one 
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{Fi}mi=1 ⇢ {fi}Ni=0

) ~c = A�1~h where A =

0

B@
e1(F1) e2(F1) · · ·
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is parameter independent

where the corresponding base elements are evaluated.
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• Need only to evaluate the GW model at this subset of                 points in order to compute the coefficients        !
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Greedy algorithm

���15

Offline
Start with input sample points               and basis   !

Set        = argmax      , where argmax gives the point fi at which      has its largest value:!

For j=2 to m repeat!

• Find                                              !

!

• Set                                                                         ( maximum pointwise error)
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• Greedy algorithm ensures exponential convergence with the number of basis templates/interpolation points.

5

ments. The next step is the prediction (as opposed to
projection) of waveforms from a sparse set of well chosen
frequency samples.

IV. EMPIRICAL INTERPOLATION

Within a projection-based approximation one has

h(x) ⇡
mX

i=1

ciei(x) , (13)

where the coe�cients ci are given by Eq. (A5). Comput-
ing the projection coe�cients ci requires full knowledge
of the function h (see Appendix A for more details).

Given a basis and partial sampling of h, in the in-
terpolation problem we are interested in predicting the
underlying function. In what follows, we will first re-
view the classical interpolation problem, using a polyno-
mial basis before discussing empirical interpolation with
application-specific basis functions, and finish this sec-
tion with an example for burst GWs.

A. Classical interpolation with polynomials

Classically the interpolation problem for a function
h(x) is the following. Given a set of m nodes {xi}, known
function evaluations {hi := h(xi)}, and a basis ei = pi(x)
where pi(x) is a degree i  m�1 polynomial, find an ap-
proximation (the interpolant)

Im[h](x) =
mX

i=1

cipi(x) ⇡ h(x) (14)

such that

Im[h](xi) = hi for i = 1, . . . ,m . (15)

That is, the approximant is required to agree with the
function at the set of m nodes.

We can show that the problem defined by Eqs. (14,15)
has a unique solution in terms of Lagrange polynomi-
als. Given a convergence rate for the projection-based
approximation Eq. (13) we might wonder how much ac-
curacy is lost by trading it for the interpolation Eq. (14)
and how to optimally choose the node points xi. When
the relevant error measurement is the maximum point-
wise error, Chebyshev nodes are known to be near-
optimal, bringing an additional error which grows like
log(m) [48, 49].

For application-specific bases, a good set of interpola-
tion points is not known a-priori. Next we describe an
approach for identifying a nearly-optimal set.

B. Empirical interpolation with RB

The Empirical Interpolation Method was proposed in
2004 [26] as a way of identifying a good set of interpola-
tion points for arbitrary basis sets on multi-dimensional
unstructured meshes and has since found numerous ap-
plications [27, 50–53]. Recently, the EIM was shown
to dramatically speed up parameterized inner product
(overlap) computations in the absence of noise [22]. For
definiteness we will focus on the frequency-domain case.
In general, a well-posed interpolation problem form basis
functions requires m interpolation points {Fi}mi=1

. Addi-
tionally, these points must ensure an accurate approxi-
mation. Crucially, the EIM algorithm selects the interpo-
lation points as a subset of the full N/2+1 data samples

(this choice is motivated in Sec. VA), {Fi}mi=1

⇢ {fi}N/2
i=0

,
and m < N/2 or even m ⌧ N/2.

With ROM we seek to find an empirical (that is,
problem-dependent) global interpolant

Im[h](f ;�) :=
mX

i=1

ci(�)ei(f) , (16)

where the ci coe�cients are defined as solutions to the
interpolation problem

Im[h](Fk;�) = h(Fk;�), 8 k = 1, . . . ,m. (17)

For the moment, we shall assume that the EIM points
are known (the precise way of finding them is explained
in Appendix B) and proceed to describe how we use them
to find the EIM interpolant. Equation (17) is equivalent

to solving an m-by-m system A~c = ~h for the coe�cients
~c, where

A :=

0

BBBB@
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CCCCA
. (18)

The EIM algorithm ensures that the matrix A is invert-
ible, with ~c = A�1~h the unique solution to Eq. (17). As
A is parameter independent we have, for all values of �,

Im[h](f ;�) = ~e T (f)
h
A�1~h(�)

i
, (19)

where ~e T = [e
1

(f), . . . , em(f)] denotes the transpose of
the basis vectors, which we continue to view as functions.

The empirical interpolant is nearly optimal in the sense
that it satisfies

max
�

kh(·;�)� Im[h(·;�)]k2  ⇤2

m�m , (20)

where �m characterizes the representation error of the ba-
sis as defined in Eq. (6) and ⇤m is a computable Lebesgue

Empirical Interpolation
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Reduced Order Quadratures
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Reduced Order Quadratures
!

In general, if we have an interpolation                                       .!

Then we can compute integrals                                       where                            are the weights 

that span the function, and provide exact integration for each   as well as their linear 

combinations.!

Standard examples of a  quadrature rule are the familiar trapezoidal and Simpson’s rules.
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Reduced Order Quadratures

• Reduced basis representation allows efficient evaluation of quadratures (integrals). 

Finds the smallest N while maintaining the accuracy needed for parameter estimation studies.

hh(�)|si ⇡
NX

i=0


h(fi;�)s⇤(fi)

Sn(fi)

�
�fi

!

In general, if we have an interpolation                                       .!

Then we can compute integrals                                       where                            are the weights 

that span the function, and provide exact integration for each   as well as their linear 

combinations.!

Standard examples of a  quadrature rule are the familiar trapezoidal and Simpson’s rules.
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Reduced Order Quadratures

•ROQ rule

Savings in computing overlaps ~N/m
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FIG. 7: Integration error (26) versus number of ROQ nodal
points (m) for 10, 000 randomly selected values of �. The solid
black curve depicts the noise-free case s = h and the last data
point

�
m = 54,�m ⇡ 3⇥ 10�8

�
corresponds to the rule used

in Fig. 8. The blue and red curves show the maximum and
minimum, over 100 realizations of pure noise data, s = n, of
the error maximised over all parameter values �. Note that
the ROQ shows exponential convergence with respect to the
number of ROQ nodes, even for pure noise data.

interpolate.

D. Computing the likelihood

In order to evaluate the likelihood we compute Eq. (3)
as

hs|si+ hh (�) |h (�)i � 2<hs|h (�)i , (31)

where the last term is handled with the ROQ rule (25)
and the first term needs to be computed once. In the
case that the data stream s(t) contains a sine-Gaussian
burst-waveform (7) and white noise n(t) (see Sec.II), we
can compute a closed-form expression for the norm,

hh (�) |h (�)i = 4A2↵
p
⇡
⇣
1� e�4⇡2f2

0↵
2
⌘
, (32)

where f
min

= 0 and f
max

= 1 have been assumed.
When closed-form expressions are unavailable we have
a few options. One possibility is to build an ROQ rule
for the norm, which requires additional o✏ine computa-
tions. Here we consider an alternative. Notice that the
norm

hh (�) |h (�)i =
mX

i=1

c2i (33)

is expressible in terms of the EIM coe�cients ~c =
A�1~h. Explicit computation of these coe�cients carries
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FIG. 8: Errors in computing the correlation between the data
stream s and the model waveform h (see Sec.II) hs |h(�, tc) i
using an ROQ rule built for tc = 0 with accuracy better than
⇠ 10�6. Empirically we find that this rule continues to work
well for non-zero values of tc. Looking ahead to Sec. VI we
anticipate evaluating the likelihood function for tc  0.5 sec.

an O(m2) cost, which is larger than the ROQ count of
O(m). However, in many applications of interest the
waveforms themselves are very expensive to compute and
so this cost will still be much smaller than the full likeli-
hood evaluation.

E. ROQ cost and e�ciency

Here we comment on ROQ o✏ine and startup costs as
well as the expected speedup for likelilood evaluations.
To find m basis functions we use the greedy algorithm

described in Appendix A. The asymptotic cost of this
algorithm applied to a training set with M elements is
O (NMm)[58]. Furthermore, the algorithm is trivially
parallelized making large M problems accessible. Once
the basis is built, an EIM algorithm is used to identify
the ROQ points. As described in Appendix B, the cost
of the EIM is dominated by inversion of a full matrix; in
particular the matrix defined in Eq. (18) for the first i
basis/points ( see algorithm 2 in Ref. [22] for a equivalent
algorithm which utilizes a lower triangular matrix). The
asymptotic cost of Alg. 2 and its modified equivalent are
O �

m4 +Nm2

�
and O �

m3 +Nm2

�
respectively.

When considering startup costs, we note that the ma-
trix A is data-independent and can be inverted o✏ine. To
compute ROQ weights first i) m inner products between
the data and all basis are computed from Eq. (23) and
finally ii) the matrix-vector product (24) is performed.
Whence the overall startup cost is O �

mN +m2

�
.

We now compare the cost of full and compressed
(ROQ) overlap evaluations, respectively Eq. (21) and
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V. PLAYING WITH NOISE

Errors of interest: A typical experiment will involve monitoring integration errors which we compute as |Id �
IROQ|, where Id and IROQ are the overlap integrals computed respectively with the usual and ROQ integrations. The
RB representation error is another important quantity which we compute as kh� Pnhk, where h is a waveform and
Pnh is its projection onto the RB space.

A. Project and neglect

In the previous section was questioned whether the noise n(t) could affect the computation of PDF or, in other
words, whether we can compute the overlap integrals [Eq. (14)] using ROQ in the presence of noise. In this section
we prove that we do not need to worry about the possible noise effects, since it does not have any contribution the
overlap integrals as long as the RB representation of our waveform is accurate enough.

To compute posterior probability distributions for waveform parameters, we need to compute scalar products like
hs|h(�)i [see Eq. (13)], where

s(t) = hs
(t) + n(t) , (29)

with, s(t) the detected signal, hs
(t) the detector’s response and h(�) our waveform template.

We want to approximate hs|h(�)i using RB and ROQ methods. If we construct the reduced basis decomposition
hi
RB for the template space, then for any value of � we can write

h(�) =
X

i

hh(�)|hi
RBihi

RB + �h ⌘
X

i

↵i(�)h
i
RB + �h , (30)

(assuming that the hi
RB ’s are the orthonormal vectors that result from the Gram-Schmidt orthonormalisation proce-

dure rather than the physical waveforms that are included in the set). The error term, �h, can be made exponentially
small for all values of � by the RB construction. Similarly we can write the signal as

s =
X

i

hs|hi
RBihi

RB + �s ⌘
X

i

�i(�)h
i
RB + �s . (31)

The first term is the projection of the signal onto the RB, while the �s bit is the part that is "left over" and is
therefore orthogonal to all the vectors in the RB. The signal may contain a true waveform hs

(t), for which the error
in this projection is also exponentially small, but also contains noise n(t), for which the error does not need to be
small. Thus �s ⇠ s in general.

The inner product hs|h(�)i can then be written as

hs|h(�)i =
X

i

X

j

�i↵jhhi
RB |h

j
RBi+ h�s|�hi =

X

i

�ihhi
RB |h(�)i+ h�s|�hi , (32)

where we have used the fact that h�s|hj
RBi = hhi

RB |�hi = 0, since all of the {hRB}’s are orthogonal to �s and �h,
to make this simplification.

If we then make our first approximation, which is to take

hs|h(�)i ⇡
X

�ihhi
RB |h(�)i (33)

the error is of order �h, which is exponentially small, even though �s is of order s. [In principle you could construct
artificial scenarios in which the signal has very small projection into the parameter space and very large projection in
the orthogonal direction represented by �h, but this is not realistic. Assuming Gaussian noise, the quantity hn|hi is
distributed as N(0,

p

hh|hi) and so for exponentially small h�h|�hi, large hn|�hi is extremely improbable.]
We now want to make a second approximation which is to represent the inner product above by a reduced order

quadrature. We can construct an ROQ rule which accurately (exponential convergence) reproduces inner products
between waveforms in the parameter space. Denoting s̃ =

P

�ihi
RB as the projection of the signal into the RB, if

s̃ is actually a waveform, the existing ROQ rule already provides an exponentially convergent approximation to the
needed inner product. One could think that the noise part of s̃ need not represent a physical waveform, as it is just
some arbitrary random combination of the RB waveforms. But, each of the terms in

P

�ihhi
RB |h(�)i is an overlap
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Errors of interest: A typical experiment will involve monitoring integration errors which we compute as |Id �
IROQ|, where Id and IROQ are the overlap integrals computed respectively with the usual and ROQ integrations. The
RB representation error is another important quantity which we compute as kh� Pnhk, where h is a waveform and
Pnh is its projection onto the RB space.

A. Project and neglect

In the previous section was questioned whether the noise n(t) could affect the computation of PDF or, in other
words, whether we can compute the overlap integrals [Eq. (14)] using ROQ in the presence of noise. In this section
we prove that we do not need to worry about the possible noise effects, since it does not have any contribution the
overlap integrals as long as the RB representation of our waveform is accurate enough.

To compute posterior probability distributions for waveform parameters, we need to compute scalar products like
hs|h(�)i [see Eq. (13)], where

s(t) = hs
(t) + n(t) , (29)

with, s(t) the detected signal, hs
(t) the detector’s response and h(�) our waveform template.

We want to approximate hs|h(�)i using RB and ROQ methods. If we construct the reduced basis decomposition
hi
RB for the template space, then for any value of � we can write

h(�) =
X

i

hh(�)|hi
RBihi

RB + �h ⌘
X

i

↵i(�)h
i
RB + �h , (30)

(assuming that the hi
RB ’s are the orthonormal vectors that result from the Gram-Schmidt orthonormalisation proce-

dure rather than the physical waveforms that are included in the set). The error term, �h, can be made exponentially
small for all values of � by the RB construction. Similarly we can write the signal as

s =
X

i

hs|hi
RBihi

RB + �s ⌘
X

i

�i(�)h
i
RB + �s . (31)

The first term is the projection of the signal onto the RB, while the �s bit is the part that is "left over" and is
therefore orthogonal to all the vectors in the RB. The signal may contain a true waveform hs

(t), for which the error
in this projection is also exponentially small, but also contains noise n(t), for which the error does not need to be
small. Thus �s ⇠ s in general.

The inner product hs|h(�)i can then be written as

hs|h(�)i =
X

i

X

j

�i↵jhhi
RB |h

j
RBi+ h�s|�hi =

X

i

�ihhi
RB |h(�)i+ h�s|�hi , (32)

where we have used the fact that h�s|hj
RBi = hhi

RB |�hi = 0, since all of the {hRB}’s are orthogonal to �s and �h,
to make this simplification.

If we then make our first approximation, which is to take

hs|h(�)i ⇡
X

�ihhi
RB |h(�)i (33)

the error is of order �h, which is exponentially small, even though �s is of order s. [In principle you could construct
artificial scenarios in which the signal has very small projection into the parameter space and very large projection in
the orthogonal direction represented by �h, but this is not realistic. Assuming Gaussian noise, the quantity hn|hi is
distributed as N(0,

p

hh|hi) and so for exponentially small h�h|�hi, large hn|�hi is extremely improbable.]
We now want to make a second approximation which is to represent the inner product above by a reduced order

quadrature. We can construct an ROQ rule which accurately (exponential convergence) reproduces inner products
between waveforms in the parameter space. Denoting s̃ =

P

�ihi
RB as the projection of the signal into the RB, if

s̃ is actually a waveform, the existing ROQ rule already provides an exponentially convergent approximation to the
needed inner product. One could think that the noise part of s̃ need not represent a physical waveform, as it is just
some arbitrary random combination of the RB waveforms. But, each of the terms in

P

�ihhi
RB |h(�)i is an overlap

Detected signal

The error of the projection of the true GW with the RB one          is exponentially small
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Errors of interest: A typical experiment will involve monitoring integration errors which we compute as |Id �
IROQ|, where Id and IROQ are the overlap integrals computed respectively with the usual and ROQ integrations. The
RB representation error is another important quantity which we compute as kh� Pnhk, where h is a waveform and
Pnh is its projection onto the RB space.

A. Project and neglect

In the previous section was questioned whether the noise n(t) could affect the computation of PDF or, in other
words, whether we can compute the overlap integrals [Eq. (14)] using ROQ in the presence of noise. In this section
we prove that we do not need to worry about the possible noise effects, since it does not have any contribution the
overlap integrals as long as the RB representation of our waveform is accurate enough.

To compute posterior probability distributions for waveform parameters, we need to compute scalar products like
hs|h(�)i [see Eq. (13)], where

s(t) = hs
(t) + n(t) , (29)

with, s(t) the detected signal, hs
(t) the detector’s response and h(�) our waveform template.

We want to approximate hs|h(�)i using RB and ROQ methods. If we construct the reduced basis decomposition
hi
RB for the template space, then for any value of � we can write

h(�) =
X

i

hh(�)|hi
RBihi

RB + �h ⌘
X

i

↵i(�)h
i
RB + �h , (30)

(assuming that the hi
RB ’s are the orthonormal vectors that result from the Gram-Schmidt orthonormalisation proce-

dure rather than the physical waveforms that are included in the set). The error term, �h, can be made exponentially
small for all values of � by the RB construction. Similarly we can write the signal as

s =
X

i

hs|hi
RBihi

RB + �s ⌘
X

i

�i(�)h
i
RB + �s . (31)

The first term is the projection of the signal onto the RB, while the �s bit is the part that is "left over" and is
therefore orthogonal to all the vectors in the RB. The signal may contain a true waveform hs

(t), for which the error
in this projection is also exponentially small, but also contains noise n(t), for which the error does not need to be
small. Thus �s ⇠ s in general.

The inner product hs|h(�)i can then be written as

hs|h(�)i =
X

i

X

j

�i↵jhhi
RB |h

j
RBi+ h�s|�hi =

X

i

�ihhi
RB |h(�)i+ h�s|�hi , (32)

where we have used the fact that h�s|hj
RBi = hhi

RB |�hi = 0, since all of the {hRB}’s are orthogonal to �s and �h,
to make this simplification.

If we then make our first approximation, which is to take

hs|h(�)i ⇡
X

�ihhi
RB |h(�)i (33)

the error is of order �h, which is exponentially small, even though �s is of order s. [In principle you could construct
artificial scenarios in which the signal has very small projection into the parameter space and very large projection in
the orthogonal direction represented by �h, but this is not realistic. Assuming Gaussian noise, the quantity hn|hi is
distributed as N(0,

p

hh|hi) and so for exponentially small h�h|�hi, large hn|�hi is extremely improbable.]
We now want to make a second approximation which is to represent the inner product above by a reduced order

quadrature. We can construct an ROQ rule which accurately (exponential convergence) reproduces inner products
between waveforms in the parameter space. Denoting s̃ =

P

�ihi
RB as the projection of the signal into the RB, if

s̃ is actually a waveform, the existing ROQ rule already provides an exponentially convergent approximation to the
needed inner product. One could think that the noise part of s̃ need not represent a physical waveform, as it is just
some arbitrary random combination of the RB waveforms. But, each of the terms in

P

�ihhi
RB |h(�)i is an overlap
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IROQ|, where Id and IROQ are the overlap integrals computed respectively with the usual and ROQ integrations. The
RB representation error is another important quantity which we compute as kh� Pnhk, where h is a waveform and
Pnh is its projection onto the RB space.

A. Project and neglect

In the previous section was questioned whether the noise n(t) could affect the computation of PDF or, in other
words, whether we can compute the overlap integrals [Eq. (14)] using ROQ in the presence of noise. In this section
we prove that we do not need to worry about the possible noise effects, since it does not have any contribution the
overlap integrals as long as the RB representation of our waveform is accurate enough.

To compute posterior probability distributions for waveform parameters, we need to compute scalar products like
hs|h(�)i [see Eq. (13)], where

s(t) = hs
(t) + n(t) , (29)

with, s(t) the detected signal, hs
(t) the detector’s response and h(�) our waveform template.

We want to approximate hs|h(�)i using RB and ROQ methods. If we construct the reduced basis decomposition
hi
RB for the template space, then for any value of � we can write

h(�) =
X

i

hh(�)|hi
RBihi

RB + �h ⌘
X

i

↵i(�)h
i
RB + �h , (30)

(assuming that the hi
RB ’s are the orthonormal vectors that result from the Gram-Schmidt orthonormalisation proce-

dure rather than the physical waveforms that are included in the set). The error term, �h, can be made exponentially
small for all values of � by the RB construction. Similarly we can write the signal as

s =
X

i

hs|hi
RBihi

RB + �s ⌘
X

i

�i(�)h
i
RB + �s . (31)

The first term is the projection of the signal onto the RB, while the �s bit is the part that is "left over" and is
therefore orthogonal to all the vectors in the RB. The signal may contain a true waveform hs

(t), for which the error
in this projection is also exponentially small, but also contains noise n(t), for which the error does not need to be
small. Thus �s ⇠ s in general.

The inner product hs|h(�)i can then be written as

hs|h(�)i =
X

i

X

j

�i↵jhhi
RB |h

j
RBi+ h�s|�hi =

X

i

�ihhi
RB |h(�)i+ h�s|�hi , (32)

where we have used the fact that h�s|hj
RBi = hhi

RB |�hi = 0, since all of the {hRB}’s are orthogonal to �s and �h,
to make this simplification.

If we then make our first approximation, which is to take

hs|h(�)i ⇡
X

�ihhi
RB |h(�)i (33)

the error is of order �h, which is exponentially small, even though �s is of order s. [In principle you could construct
artificial scenarios in which the signal has very small projection into the parameter space and very large projection in
the orthogonal direction represented by �h, but this is not realistic. Assuming Gaussian noise, the quantity hn|hi is
distributed as N(0,

p

hh|hi) and so for exponentially small h�h|�hi, large hn|�hi is extremely improbable.]
We now want to make a second approximation which is to represent the inner product above by a reduced order

quadrature. We can construct an ROQ rule which accurately (exponential convergence) reproduces inner products
between waveforms in the parameter space. Denoting s̃ =

P

�ihi
RB as the projection of the signal into the RB, if

s̃ is actually a waveform, the existing ROQ rule already provides an exponentially convergent approximation to the
needed inner product. One could think that the noise part of s̃ need not represent a physical waveform, as it is just
some arbitrary random combination of the RB waveforms. But, each of the terms in

P

�ihhi
RB |h(�)i is an overlap

The error of the projection of the detected signal with the RB one is                    due to the noise

cross terms cancel due to orthogonality condition 

and using that        is exponentially small
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In the previous section was questioned whether the noise n(t) could affect the computation of PDF or, in other
words, whether we can compute the overlap integrals [Eq. (14)] using ROQ in the presence of noise. In this section
we prove that we do not need to worry about the possible noise effects, since it does not have any contribution the
overlap integrals as long as the RB representation of our waveform is accurate enough.

To compute posterior probability distributions for waveform parameters, we need to compute scalar products like
hs|h(�)i [see Eq. (13)], where

s(t) = hs
(t) + n(t) , (29)

with, s(t) the detected signal, hs
(t) the detector’s response and h(�) our waveform template.

We want to approximate hs|h(�)i using RB and ROQ methods. If we construct the reduced basis decomposition
hi
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X

i
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X
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X

i

�ihhi
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where we have used the fact that h�s|hj
RBi = hhi

RB |�hi = 0, since all of the {hRB}’s are orthogonal to �s and �h,
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artificial scenarios in which the signal has very small projection into the parameter space and very large projection in
the orthogonal direction represented by �h, but this is not realistic. Assuming Gaussian noise, the quantity hn|hi is
distributed as N(0,
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hh|hi) and so for exponentially small h�h|�hi, large hn|�hi is extremely improbable.]
We now want to make a second approximation which is to represent the inner product above by a reduced order

quadrature. We can construct an ROQ rule which accurately (exponential convergence) reproduces inner products
between waveforms in the parameter space. Denoting s̃ =

P

�ihi
RB as the projection of the signal into the RB, if

s̃ is actually a waveform, the existing ROQ rule already provides an exponentially convergent approximation to the
needed inner product. One could think that the noise part of s̃ need not represent a physical waveform, as it is just
some arbitrary random combination of the RB waveforms. But, each of the terms in
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8

V. PLAYING WITH NOISE
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IROQ|, where Id and IROQ are the overlap integrals computed respectively with the usual and ROQ integrations. The
RB representation error is another important quantity which we compute as kh� Pnhk, where h is a waveform and
Pnh is its projection onto the RB space.

A. Project and neglect

In the previous section was questioned whether the noise n(t) could affect the computation of PDF or, in other
words, whether we can compute the overlap integrals [Eq. (14)] using ROQ in the presence of noise. In this section
we prove that we do not need to worry about the possible noise effects, since it does not have any contribution the
overlap integrals as long as the RB representation of our waveform is accurate enough.

To compute posterior probability distributions for waveform parameters, we need to compute scalar products like
hs|h(�)i [see Eq. (13)], where

s(t) = hs
(t) + n(t) , (29)

with, s(t) the detected signal, hs
(t) the detector’s response and h(�) our waveform template.

We want to approximate hs|h(�)i using RB and ROQ methods. If we construct the reduced basis decomposition
hi
RB for the template space, then for any value of � we can write

h(�) =
X

i

hh(�)|hi
RBihi

RB + �h ⌘
X

i

↵i(�)h
i
RB + �h , (30)

(assuming that the hi
RB ’s are the orthonormal vectors that result from the Gram-Schmidt orthonormalisation proce-

dure rather than the physical waveforms that are included in the set). The error term, �h, can be made exponentially
small for all values of � by the RB construction. Similarly we can write the signal as

s =
X

i

hs|hi
RBihi

RB + �s ⌘
X

i

�i(�)h
i
RB + �s . (31)

The first term is the projection of the signal onto the RB, while the �s bit is the part that is "left over" and is
therefore orthogonal to all the vectors in the RB. The signal may contain a true waveform hs

(t), for which the error
in this projection is also exponentially small, but also contains noise n(t), for which the error does not need to be
small. Thus �s ⇠ s in general.

The inner product hs|h(�)i can then be written as

hs|h(�)i =
X

i

X

j

�i↵jhhi
RB |h

j
RBi+ h�s|�hi =

X

i

�ihhi
RB |h(�)i+ h�s|�hi , (32)

where we have used the fact that h�s|hj
RBi = hhi

RB |�hi = 0, since all of the {hRB}’s are orthogonal to �s and �h,
to make this simplification.

If we then make our first approximation, which is to take
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RB |h(�)i (33)

the error is of order �h, which is exponentially small, even though �s is of order s. [In principle you could construct
artificial scenarios in which the signal has very small projection into the parameter space and very large projection in
the orthogonal direction represented by �h, but this is not realistic. Assuming Gaussian noise, the quantity hn|hi is
distributed as N(0,
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hh|hi) and so for exponentially small h�h|�hi, large hn|�hi is extremely improbable.]
We now want to make a second approximation which is to represent the inner product above by a reduced order

quadrature. We can construct an ROQ rule which accurately (exponential convergence) reproduces inner products
between waveforms in the parameter space. Denoting s̃ =

P

�ihi
RB as the projection of the signal into the RB, if

s̃ is actually a waveform, the existing ROQ rule already provides an exponentially convergent approximation to the
needed inner product. One could think that the noise part of s̃ need not represent a physical waveform, as it is just
some arbitrary random combination of the RB waveforms. But, each of the terms in

P

�ihhi
RB |h(�)i is an overlap
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FIG. 7: Integration error (26) versus number of ROQ nodal
points (m) for 10, 000 randomly selected values of �. The solid
black curve depicts the noise-free case s = h and the last data
point

�
m = 54,�m ⇡ 3⇥ 10�8

�
corresponds to the rule used

in Fig. 8. The blue and red curves show the maximum and
minimum, over 100 realizations of pure noise data, s = n, of
the error maximised over all parameter values �. Note that
the ROQ shows exponential convergence with respect to the
number of ROQ nodes, even for pure noise data.

interpolate.

D. Computing the likelihood

In order to evaluate the likelihood we compute Eq. (3)
as

hs|si+ hh (�) |h (�)i � 2<hs|h (�)i , (31)

where the last term is handled with the ROQ rule (25)
and the first term needs to be computed once. In the
case that the data stream s(t) contains a sine-Gaussian
burst-waveform (7) and white noise n(t) (see Sec.II), we
can compute a closed-form expression for the norm,

hh (�) |h (�)i = 4A2↵
p
⇡
⇣
1� e�4⇡2f2

0↵
2
⌘
, (32)

where f
min

= 0 and f
max

= 1 have been assumed.
When closed-form expressions are unavailable we have
a few options. One possibility is to build an ROQ rule
for the norm, which requires additional o✏ine computa-
tions. Here we consider an alternative. Notice that the
norm

hh (�) |h (�)i =
mX

i=1

c2i (33)

is expressible in terms of the EIM coe�cients ~c =
A�1~h. Explicit computation of these coe�cients carries
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FIG. 8: Errors in computing the correlation between the data
stream s and the model waveform h (see Sec.II) hs |h(�, tc) i
using an ROQ rule built for tc = 0 with accuracy better than
⇠ 10�6. Empirically we find that this rule continues to work
well for non-zero values of tc. Looking ahead to Sec. VI we
anticipate evaluating the likelihood function for tc  0.5 sec.

an O(m2) cost, which is larger than the ROQ count of
O(m). However, in many applications of interest the
waveforms themselves are very expensive to compute and
so this cost will still be much smaller than the full likeli-
hood evaluation.

E. ROQ cost and e�ciency

Here we comment on ROQ o✏ine and startup costs as
well as the expected speedup for likelilood evaluations.
To find m basis functions we use the greedy algorithm

described in Appendix A. The asymptotic cost of this
algorithm applied to a training set with M elements is
O (NMm)[58]. Furthermore, the algorithm is trivially
parallelized making large M problems accessible. Once
the basis is built, an EIM algorithm is used to identify
the ROQ points. As described in Appendix B, the cost
of the EIM is dominated by inversion of a full matrix; in
particular the matrix defined in Eq. (18) for the first i
basis/points ( see algorithm 2 in Ref. [22] for a equivalent
algorithm which utilizes a lower triangular matrix). The
asymptotic cost of Alg. 2 and its modified equivalent are
O �

m4 +Nm2

�
and O �

m3 +Nm2

�
respectively.

When considering startup costs, we note that the ma-
trix A is data-independent and can be inverted o✏ine. To
compute ROQ weights first i) m inner products between
the data and all basis are computed from Eq. (23) and
finally ii) the matrix-vector product (24) is performed.
Whence the overall startup cost is O �

mN +m2

�
.

We now compare the cost of full and compressed
(ROQ) overlap evaluations, respectively Eq. (21) and

Canizares et al PRD 2013
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3)   Fast likelihood computations
Online

where

ROQ parameter estimation recipe

• Construct reduced basis: Find a set of templates that can reproduce every template in the model 

space to a certain specified precision. OFFLINE

• Find empirical interpolation points: Find a set of points at which to match templates onto the basis. OFFLINE

• Construct signal specific weights: Compute the weights to use in the quadrature rule once data has 

been collected. startup

• Carry out parameter estimation: Evaluate likelihood/posterior over parameter space using ROQ rule 

and, e.g., MCMC. ONLINE
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!

Two parameter case - burst width and central frequency.!

!

!

!

!

!

Marginalised posterior distributions are indistinguishable and pass KS test with p<10-6.!

Factor of >20 speed up in MCMC run time.
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ROQ Parameter Estimation: Burst GW waveform

Full parameter space: 4D case!

Amplitude which is multiplicative: Use same ROQ rule.!

Coalescence time: Introduces frequency-dependent phase shift. However, tc=0 ROQ rule works 
well enough:

A,↵, f0, tc
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The above definitions and identities allow us to relate empirical interpolants with different basis

ˆInh(~F ; tc) = êT ˆA�1h(~F ; tc)

= êTA�1R�1h(~F ; tc)

= êTA�1h(~F ; 0)

= exp(�2⇡iftc)e
TA�1h(~F ; 0)

= exp(�2⇡iftc)Inh(~F ; 0)

C. ROQ rules for nonzero tc

An exact non-zero ROQ rule can be computed from the approximation Inh(~F ; 0)

hs, h(·; tc)i =
Z

s⇤h(f ; tc)

=

Z �
s exp(2⇡iftc)

�⇤
h(f ; 0)

⇡
Z �

s exp(2⇡iftc)
�⇤

eTA�1h(~F ; 0)

=

Z �
s exp(2⇡iftc)

�⇤
eTA�1

�
h(~F ; 0)

= !(tc)
Th(~F ; 0) (13)

or ˆInh(~F ; tc)

hs, h(·; tc)i =
Z

s⇤h(f ; tc)

⇡
Z

s⇤êT ˆA�1h(~F ; tc)

=

Z
s⇤êT ˆA�1

�
h(~F ; tc)

= !̂(0)Th(~F ; tc) (14)

In the burst paper we used “ignore tc" (in the sense that we don’t require h(f ; tc) to be represented in the basis
{ei}) for which hs, h(·; tc)i was computed by !(0)Th(~F ; tc). Starting from Eq. 14 we have

Z
s⇤êT ˆA�1

�
h(~F ; tc) ⇡

Z
s⇤eTA�1

�
h(~F ; tc) = !(0)Th(~F ; tc)

the ignore tc ROQ rule whose approximation accuracy depends on êT ˆA�1 ⇡ eTA�1. Notice that e =

[e1(f), e2(f), . . . , en(f)] and, if we evaluate this “basis matrix" at the EIM nodes then ê(~F )

T
ˆA�1

= e(~F )

TA�1 is
identically true. Letting T be a large matrix similar to R above but appropriate for the matrix e (whose rows are
evaluations at f instead of F ) what we need, then, is T ˆA�1A to be close to the identity matrix. We have no control
over the matrix T , but this relationship suggests we might choose EIM points so that the T ˆA�1A is close the identity.

Next consider the error made in approximating hs, h(·; tc)i by a constant !(0)Th(~F ; 0). Starting from Eq. 13

!(tc)
Th(~F ; 0) = !(0)Th(~F ; 0) + tc

@!(tc)
T

@tc

��
tc=0

h(~F ; 0) +O(t2c)

which will be small whenever

tc

������

nX

k=1

@!k(tc)

@tc

��
tc=0

h(Fk; 0)

������
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= êTA�1R�1h(~F ; tc)
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s⇤êT ˆA�1

�
h(~F ; tc)

= !̂(0)Th(~F ; tc) (14)

In the burst paper we used “ignore tc" (in the sense that we don’t require h(f ; tc) to be represented in the basis
{ei}) for which hs, h(·; tc)i was computed by !(0)Th(~F ; tc). Starting from Eq. 14 we have

Z
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In the burst case the basis built for tc = 0 works well for non-zero tc.
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FIG. 7: Integration error (26) versus number of ROQ nodal
points (m) for 10, 000 randomly selected values of �. The solid
black curve depicts the noise-free case s = h and the last data
point

�
m = 54,�m ⇡ 3⇥ 10�8

�
corresponds to the rule used

in Fig. 8. The blue and red curves show the maximum and
minimum, over 100 realizations of pure noise data, s = n, of
the error maximised over all parameter values �. Note that
the ROQ shows exponential convergence with respect to the
number of ROQ nodes, even for pure noise data.

interpolate.

D. Computing the likelihood

In order to evaluate the likelihood we compute Eq. (3)
as

hs|si+ hh (�) |h (�)i � 2<hs|h (�)i , (31)

where the last term is handled with the ROQ rule (25)
and the first term needs to be computed once. In the
case that the data stream s(t) contains a sine-Gaussian
burst-waveform (7) and white noise n(t) (see Sec.II), we
can compute a closed-form expression for the norm,

hh (�) |h (�)i = 4A2↵
p
⇡
⇣
1� e�4⇡2f2

0↵
2
⌘
, (32)

where f
min

= 0 and f
max

= 1 have been assumed.
When closed-form expressions are unavailable we have
a few options. One possibility is to build an ROQ rule
for the norm, which requires additional o✏ine computa-
tions. Here we consider an alternative. Notice that the
norm

hh (�) |h (�)i =
mX

i=1

c2i (33)

is expressible in terms of the EIM coe�cients ~c =
A�1~h. Explicit computation of these coe�cients carries
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FIG. 8: Errors in computing the correlation between the data
stream s and the model waveform h (see Sec.II) hs |h(�, tc) i
using an ROQ rule built for tc = 0 with accuracy better than
⇠ 10�6. Empirically we find that this rule continues to work
well for non-zero values of tc. Looking ahead to Sec. VI we
anticipate evaluating the likelihood function for tc  0.5 sec.

an O(m2) cost, which is larger than the ROQ count of
O(m). However, in many applications of interest the
waveforms themselves are very expensive to compute and
so this cost will still be much smaller than the full likeli-
hood evaluation.

E. ROQ cost and e�ciency

Here we comment on ROQ o✏ine and startup costs as
well as the expected speedup for likelilood evaluations.
To find m basis functions we use the greedy algorithm

described in Appendix A. The asymptotic cost of this
algorithm applied to a training set with M elements is
O (NMm)[58]. Furthermore, the algorithm is trivially
parallelized making large M problems accessible. Once
the basis is built, an EIM algorithm is used to identify
the ROQ points. As described in Appendix B, the cost
of the EIM is dominated by inversion of a full matrix; in
particular the matrix defined in Eq. (18) for the first i
basis/points ( see algorithm 2 in Ref. [22] for a equivalent
algorithm which utilizes a lower triangular matrix). The
asymptotic cost of Alg. 2 and its modified equivalent are
O �

m4 +Nm2

�
and O �

m3 +Nm2

�
respectively.

When considering startup costs, we note that the ma-
trix A is data-independent and can be inverted o✏ine. To
compute ROQ weights first i) m inner products between
the data and all basis are computed from Eq. (23) and
finally ii) the matrix-vector product (24) is performed.
Whence the overall startup cost is O �

mN +m2

�
.

We now compare the cost of full and compressed
(ROQ) overlap evaluations, respectively Eq. (21) and
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ˆInh(~F ; tc) = êT ˆA�1h(~F ; tc)

= êTA�1R�1h(~F ; tc)
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In the burst case the basis built for tc = 0 works well for non-zero tc.
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FIG. 7: Integration error (26) versus number of ROQ nodal
points (m) for 10, 000 randomly selected values of �. The solid
black curve depicts the noise-free case s = h and the last data
point

�
m = 54,�m ⇡ 3⇥ 10�8

�
corresponds to the rule used

in Fig. 8. The blue and red curves show the maximum and
minimum, over 100 realizations of pure noise data, s = n, of
the error maximised over all parameter values �. Note that
the ROQ shows exponential convergence with respect to the
number of ROQ nodes, even for pure noise data.

interpolate.

D. Computing the likelihood

In order to evaluate the likelihood we compute Eq. (3)
as

hs|si+ hh (�) |h (�)i � 2<hs|h (�)i , (31)

where the last term is handled with the ROQ rule (25)
and the first term needs to be computed once. In the
case that the data stream s(t) contains a sine-Gaussian
burst-waveform (7) and white noise n(t) (see Sec.II), we
can compute a closed-form expression for the norm,

hh (�) |h (�)i = 4A2↵
p
⇡
⇣
1� e�4⇡2f2

0↵
2
⌘
, (32)

where f
min

= 0 and f
max

= 1 have been assumed.
When closed-form expressions are unavailable we have
a few options. One possibility is to build an ROQ rule
for the norm, which requires additional o✏ine computa-
tions. Here we consider an alternative. Notice that the
norm

hh (�) |h (�)i =
mX

i=1

c2i (33)

is expressible in terms of the EIM coe�cients ~c =
A�1~h. Explicit computation of these coe�cients carries
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FIG. 8: Errors in computing the correlation between the data
stream s and the model waveform h (see Sec.II) hs |h(�, tc) i
using an ROQ rule built for tc = 0 with accuracy better than
⇠ 10�6. Empirically we find that this rule continues to work
well for non-zero values of tc. Looking ahead to Sec. VI we
anticipate evaluating the likelihood function for tc  0.5 sec.

an O(m2) cost, which is larger than the ROQ count of
O(m). However, in many applications of interest the
waveforms themselves are very expensive to compute and
so this cost will still be much smaller than the full likeli-
hood evaluation.

E. ROQ cost and e�ciency

Here we comment on ROQ o✏ine and startup costs as
well as the expected speedup for likelilood evaluations.
To find m basis functions we use the greedy algorithm

described in Appendix A. The asymptotic cost of this
algorithm applied to a training set with M elements is
O (NMm)[58]. Furthermore, the algorithm is trivially
parallelized making large M problems accessible. Once
the basis is built, an EIM algorithm is used to identify
the ROQ points. As described in Appendix B, the cost
of the EIM is dominated by inversion of a full matrix; in
particular the matrix defined in Eq. (18) for the first i
basis/points ( see algorithm 2 in Ref. [22] for a equivalent
algorithm which utilizes a lower triangular matrix). The
asymptotic cost of Alg. 2 and its modified equivalent are
O �

m4 +Nm2

�
and O �

m3 +Nm2

�
respectively.

When considering startup costs, we note that the ma-
trix A is data-independent and can be inverted o✏ine. To
compute ROQ weights first i) m inner products between
the data and all basis are computed from Eq. (23) and
finally ii) the matrix-vector product (24) is performed.
Whence the overall startup cost is O �

mN +m2

�
.

We now compare the cost of full and compressed
(ROQ) overlap evaluations, respectively Eq. (21) and
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On going work: TaylorF2 waveforms

Waveform parameters

Standard MCMC simulation can take days to months depending on the observation times and 
sampling rates
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On going work: TaylorF2 waveforms

Waveform parameters

Standard MCMC simulation can take days to months depending on the observation times and 
sampling rates

Expected speed-up, by comparing the ratio of N/m , is of 35. for early aLIGO (lower f= 40 Hz and  

observation time Tobs = 32s). If lower f = 10 Hz is achieved then Tobs = 30 minutes for BNS signals, and 

the speed-up will be          !
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On going work: TaylorF2 waveforms

Waveform parameters

Issue: How to handle tc!

Move the tc factor                into the weight term, this avoids increase the number of RB due to a new 

(extrinsic) parameter.!

Use the DEIM interpolant based on the tc = 0  basis to (cheaply) evaluate the waveform at any 

frequency point - split the frequency dimension in several subdomains.!

This approach gives different weights for each tc value leading to increased memory and offline.!

Standard MCMC simulation can take days to months depending on the observation times and 
sampling rates

Expected speed-up, by comparing the ratio of N/m , is of 35. for early aLIGO (lower f= 40 Hz and  

observation time Tobs = 32s). If lower f = 10 Hz is achieved then Tobs = 30 minutes for BNS signals, and 

the speed-up will be          !
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ROQStandard

First results at 0-PN

Fresh first t
ests
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• Sine-Gaussian searches are fast anyway - real advantage of ROQ is for 

expensive likelihoods. !

• Method applies to any application in which overlaps/integrals need to be 

computed. Could also use it to speed-up searches over template banks, etc.!

• Approach is not specific to gravitational wave applications - can be used for 

any data analysis problem in which likelihood overlap integrals need to be 

computed.

Further applications
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• ROQs speed-up likelihood evaluations for parameter estimation of a model!

1. Construct reduced basis for model space.!

2. Identify a set of empirical interpolation points at which templates are required to 

match basis.!

3. Construct a reduced order quadrature rule that reduces integral to a linear 

combination of template evaluations at the EIM points.!

• In a gravitational wave data analysis context, have shown factors of ~20 speed-

up for a toy model of sine-Gaussian waveforms.!

• Now exploring application to compact binary coalescences and see speed-ups   

of a factor ~35 to 1,000.

Summary
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diolch i chi!


