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Outlook

¢ |ntroduction: Parameter estimation
e Reduced Order Modelling:
« Reduced Basis
« Empirical Interpolation method
« Reduced order quadratures
e Example: sine-Gaussian burst waveforms for LIGO
e On going work: TaylorF2 waveforms
e Further applications

e Summary
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Introduction

* Accurate GW models are being developed and improved in order to dig out the GW signal

h(Xo) from the noisemn .

s=h(Xo) +n h(Xo)

Gravistonal Wave
| \.lﬂ“'-'.‘ In \['V'.ll Gravitational Waves with Noise

* Markov chain Monte Carlo (MCMC) or similar techniques, like nested sampling, are employed to:

« Assess the relative likelihood of different waveform models matching the data (the likelihood

of a true detection vs a false noise trigger)

. Estimate the GW parameters by computing the posterior distribution function (PDF)
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Introduction

Match filtering techniques: The detector signal (GW + noise) is correlated against single GW

templates over long observation times (continuous GW signals) and over a large parameter space \g

(searches target unknown systems).

e Parameter estimation requires repeated evaluations of the likelihood across the parameter space.

 MCMC techniques used to compute PDF are computationally expensive - large number of waveforms

(a|b) = 4%/000 d(?[z;()f)df

are generated and filtered against the data

p(s|A) = p(nzs—h%

o< exp |- (n|n) /2]

Gaussian noise
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*The number of correlations/templates grows with the number of physical parameters and the number of

cycles ~ (Ncycles)NPar  ex. (10%)8 =1040 templates for a fully coherent search.
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Match filtering techniques: The detector signal (GW + noise) is correlated against single GW

templates over long observation times (continuous GW signals) and over a large parameter space \g

(searches target unknown systems).

e Parameter estimation requires repeated evaluations of the likelihood across the parameter space.

 MCMC techniques used to compute PDF are computationally expensive - large number of waveforms

(a|b) = 4%/000 d(?[z;()f)df

are generated and filtered against the data

p(s|]A) = p(n=s—h(A)
o< exp |- (n|n) /2]

Gaussian noise

*The number of correlations/templates grows with the number of physical parameters and the number of

cycles ~ (Ncycles)NPar  ex. (10%)8 =1040 templates for a fully coherent search.

 Correlation cost scale with the length of the data N, which in turn depends on both the observation time,

Tobs, and sampling rate N.

» Usually the presence of noise reduce the convergence of numerical integrations.
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Introduction

Example GW100916:

*Blind injection designed to test the analysis pipelines.
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arxiv:1304.1775

eParameter estimation was performed using multiple algorithms and multiple waveform

families - took several months!
In aLIGO era, expect/hope for ~10s of signals a year - need faster follow-up.

*Various methods - SVD of waveform space with interpolation, neural network training or

reduced order quadrature (ROQ).
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Reduced Order Modelling

 What we want: Compression of the data without loss of information - less computational operations.

« Usually standard interpolation is employed to represent the GW with a reduced amount of points
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Reduced Order Modelling

 What we want: Compression of the data without loss of information - less computational operations.

« Usually standard interpolation is employed to represent the GW with a reduced amount of points

Interpolation is used to approximate a function f on a domain €2, f : Q@ =+ R by requiring the

approximation, Z,,| f| : © — R, to be exact in a set of M interpolation points {x; M x; €0

f(x:) = Tarlf]() i=1,..., M

Approximates the function f by finite sums of well chosen, pre-defined basis functions g,

f(x) = Iy f](z)

Need to find the points xi and basis functions g; to

minimise the approximation error.
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Reduced Order Modelling

 What we want: Compression of the data without loss of information - less computational operations.

« Usually standard interpolation is employed to represent the GW with a reduced amount of points

Interpolation is used to approximate a function f on a domain €2, f : Q@ =+ R by requiring the

approximation, Z,,| f| : © — R, to be exact in a set of M interpolation points {x; M x; €0

f(x:) = Tarlf]() i=1,..., M

Approximates the function f by finite sums of well chosen, pre-defined basis functions g,

f(x) = Iy f](z)

Need to find the points xi and basis functions g; to

minimise the approximation error.

Polynomial basis functions, ex. Gauss-Lobato Legendre
(GLL), yields exponential convergence for analytical functions

well approximated by polynomials, and sampled at GLL
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points. Not true in GW data analysis applications. interpolation points o
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Reduced Order Modelling

e Reduced basis (RBs) framework for modelling space: Efficiently deals with

parametrised problems, in our case given by GW waveforms

Training space (template bank) covers The GWs of the training space can be
a given range of parameters represented with a basis of waveform

templates - the RBs.
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Reduced Basis

Ex. Non-spinning post-Newtonian (PN) waveforms (know in closed form) used for searches of inspirals.

Number of RB is significantly smaller

Overlap BBH BNS
Error RB TM RB TN
10~ 165 | 2.450 | 898 | 10.028

LIGO|  q1¢-" 170 | 1.2 x 10% | 904 | 4.3 x 10°

25 % 10~12| 182 15.9 x 10'2] 917 |1.4 x 1013 Representation error converges exponentially

1072 1.O58| 19,336 |5,395| 72,790 with the size of basis
AdvLIGO|  10=®  [1,687| 1.5 x 107 |8,958| 4.9 x 107
2.5 x 1071%11,700]2.3 x 10'*|8,976(5.6 x 10
1,
1,
1

Detector

1072 305| 42.496 |[7.482| 156.127
AdvVirgo 10 °° 690| 3.1 x 107 [8.960| 8.3 x 107
70314.8 x 10" (8.97716.0 x 10"

2.5 x 107"

BNS: Binary Neutron Stars , BBH: Binary Black Holes
TM = Template Metric (standard approach)

| — 2D (no-spin)
| - - 3D (equal-spin)
— 4D (unequal-spin)

500 1000 1500
number of reduced basis elements

The number of RB marginally increases when adding new parameters

Field et al. PRL 2012

representation error
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Reduced Basis .
1) Greedy algorithm to build a RB Offline

evaluated at sample of (training) points { )\z}f\i "

- Start with a set of training templates {1, ( f; )\Z-)},f\il

Output {€i}i=1 the RBbasis {);}™ and the associated points m < M .
. The first basis template is chosen at random for some j €1 = h;(f; \;)

. lterate: For j=2 to m

e Compute 7—[,{“_1 = P;_1|hi(f; A\x)], the projection of the
remaining waveforms in the training set into the current reduced basis.

e Find K = argmaXHH‘,i_l — hi(f; \)]|? , the template in the training set with the largest (pointwise)

representation error.
e Set ¢;(t) = hx(f; Ax) and orthonormalize
¢ |Increment | and repeat.

« Stop when maximum representation error is less than a threshold
m

Ih(A) — h(AN)rB| = [h(A) — ZC(M)&;! < €
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Reduced Basis

Example: Sine-Gaussian burst waveform

Sine-Gaussian burst model used to represent generic burst source, e.g. supernova. The waveforms are

described by four parameters A, «, fo, t.

R(f, ) = i2v/2raeli2rte=2m0 (5 45%) sinh (47202 fy f)

*The most important ones are the burst width and frequency.

O := max min ||h(-; X) —
X ceC

) . _ representation errors
Greedy points for sine—gaussian waveforms . .

- (2) (7) (3) (6) @ © 6 RB error

S I I B I BRI R R L B 2] 1

*
*

|
(]

54 basis
out of 180 templates

*

max errors
o

Canizares et al PRD 2013
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Reduced Basis

Caveats

® Not all linear combinations of basis templates represent physical waveforms.
e Must restrict evaluation of likelihood/posterior to physically reasonable combinations.
® On the fly projection of each waveform onto basis is expensive - lose savings.

® |[nterpolation between points in parameter space can be used, but only in small

parameter regions.

Priscilla Canizares (@ Cardiff University



Empirical Interpolation p
Ine

«Empirical interpolation method (EIM) employed to approximates

parametrised functions h(u, \)as

M
h(,u, )\) ~ Zcfi()\)ei(,u) where U is f or {

1=1

The EIM is an algorithm for constructing interpolation points for a given set

of basis functions iteratively,

Priscilla Canizares (@ Cardiff University



Empirical Interpolation

2) Empirical interpolation method: Find the RB evaluation points [t = f or {

Offline

. EIM is deals with parametrised problems characterised by non-polynomial bases.
. The set of EIM points is nested and hierarchical,

. Easily handles unstructured meshes in several dimensions.

Priscilla Canizares (@ Cardiff University



Empirical Interpolation

2) Empirical interpolation method: Find the RB evaluation points [t = f or {

Offline

. EIM is deals with parametrised problems characterised by non-polynomial bases.
. The set of EIM points is nested and hierarchical,

. Easily handles unstructured meshes in several dimensions.

We impose that the value of the RB-waveform at a given (interpolation) points is the same that the one

obtained by evaluating the true signal
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Empirical Interpolation

Offline
2) Empirical interpolation method: Find the RB evaluation points [t = f or {

. EIM is deals with parametrised problems characterised by non-polynomial bases.

. The set of EIM points is nested and hierarchical,

. Easily handles unstructured meshes in several dimensions.

We impose that the value of the RB-waveform at a given (interpolation) points is the same that the one
obtained by evaluating the true signal

Input the set of basis functions {e;};*; and points {f}.i]\;1 Output set of m EIM points {Fi}/", C {fi}},

where the corresponding base elements are evaluated.

I|h)(f, A) = Zcz-e?:(f) —— Lu[h(F,N) = h(F, ) {FYL C {fihilo
62(F1)

e2(F2) is parameter independent

Priscilla Canizares Cardiff University



Empirical Interpolation

Offline
2) Empirical interpolation method: Find the RB evaluation points [t = f or {

. EIM is deals with parametrised problems characterised by non-polynomial bases.

. The set of EIM points is nested and hierarchical,

. Easily handles unstructured meshes in several dimensions.

We impose that the value of the RB-waveform at a given (interpolation) points is the same that the one
obtained by evaluating the true signal

Input the set of basis functions {e;};*; and points {f}.i]\;1 Output set of m EIM points {Fi}/", C {fi}},

where the corresponding base elements are evaluated.

m

In[P(f,N) =) el f) —— Zalh](F, ) = h(F;,0)  {F12 C {fikise

=1
€9 (Fl)

= c=A"'h where A = ez(F3) is parameter independent

e Need only to evaluate the GW model at this subset of m < IV points in order to compute the coefficients

C; of the reduced basis.
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Empirical Interpolation

Greedy algorithm Offline

Start with input sample points {f} _ 1 and basis {eitizy

Set Fq = argmax €1, where argmax gives the point fi at which €1has its largest value: |6(F1)] > |€1 (Z)| \4)

For j=2 to m repeat

™m
e Find Zi[e;11] = chej ) where ¢; = e,4;(F;)/e;(F;)
71=1

eSet Fjy; =argmax|e; —Z;lejt1]| (maximum pointwise error)

e Greedy algorithm ensures exponential convergence with the number of basis templates/interpolation points.

max [h(:5A) = T [R(5 N2 < A2 0,

* EIM points
(a0, fo) = (.02,.01)
(a, fo) = (.02,1) ]

el ' _ - ez _ (a, fo) = (2,.01) |

* 1st point * 2nd point ——(a, fo) = (2,1)

15 20 25 30 '. 02 03 04 05
frequency (Hz) frequency (Hz)

10° 10'
frequency (Hz)

Canizares et al PRD 2013
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Reduced Order Quadratures

B
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Reduced Order Quadratures

m

In general, if we have an interpolation h(x) ~ Z h(xi)li(z)

i=1
Then we can compute integrals /h(w)dac ~ Zaih(x@) where Oéi/li(x)d$ are the weights
1=1

that span the function, and provide exact integration for each ZZ as well as their linear

combinations.

Standard examples of a quadrature rule are the familiar trapezoidal and Simpson’s rules.
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Reduced Order Quadratures

m

In general, if we have an interpolation h(x) ~ Z h(xi)li(z)
i=1

Then we can compute integrals /h(ac)dw ~ Zaih(m’@) where Oéi/li(x)d$ are the weights
1=1

that span the function, and provide exact integration for each ZZ as well as their linear

combinations.

Standard examples of a quadrature rule are the familiar trapezoidal and Simpson’s rules.

e Reduced basis representation allows efficient evaluation of quadratures (integrals).

9~ 3 [ an

1=0

Finds the smallest N while maintaining the accuracy needed for parameter estimation studies.
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Reduced Order Quadratures
Savings in computing overlaps ~N/m

*ROQ rule

N

(hVlsha = 4% | TRV (DA ~ AR s (f)h(f VAT

k=0
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Reduced Order Quadratures

Savings in computing overlaps ~N/m

*ROQ rule
N

BOIs)a = 4% [ BN (D) = 4RSS (SRS NAS
k=0 m

N Inlh](£,0) = ) ciei(f)
~ AR DY 5™ (fu) T [P fr; DIAS

k=0
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Savings in computing overlaps ~N/m

*ROQ rule

N

BOIs)a = 4% [ BN (D) = 4RSS (SRS NAS
k=0 m

N Inlh](£,0) = ) ciei(f)
~ AR DY 5™ (fu) T [P fr; DIAS

Priscilla Canizares (@ Cardiff University



Reduced Order Quadratures
Savings in computing overlaps ~N/m

*ROQ rule
N

k:O m
Tn[P)(f, ) = ) cieil f)
~ AR DY 5™ (fu) T [P fr; DIAS =

BWlsha =R [ BN (N = 43

How much m < M is model dependent

Signal specific weights, computed once we have the data Online
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Reduced Order Quadratures

* Noise does not affect the computation of overlaps (s|h (\)) using ROQ

Detected signal s(t, A\) = h(t, \) + n(t)

The error of the projection of the true GW with the RB one 05 is exponentially small
Vg +0h =) ai(N)hjpp + 0k

The error of the projection of the detected signal with the RB oneis s ~ s  due to the noise

§ = Z(S‘h%@ R + 05 = Zﬁz‘()‘) rp + 05

cross terms cancel due to orthogonality condition

ROQ noise free
‘‘‘‘‘‘‘ - ROQ noise (min)
ROQ noise (max)| |

and using that 0 is exponentially small

(slh(X) = > Bi

max errors

20 30 40
# ROQ points
Canizares et al PRD 2013
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Reduced Order Quadratures

3) Fast likelihood computations _
Online

*The cost of evaluating integrals scales lineally as the # of RBs m

N

(h(N)]s)rog = 4R D>~ weh(Fis ) where  wj =Y s*(fi)ej (fu) ATIAS

k=1 k=0

ROQ parameter estimation recipe

Priscilla Canizares (@ Cardiff University



Reduced Order Quadratures

3) Fast likelihood computations _
Online

*The cost of evaluating integrals scales lineally as the # of RBs m

N

(h(N)]s)rog = 4R D>~ weh(Fis ) where  wj =Y s*(fi)ej (fu) ATIAS

k=1 k=0
ROQ parameter estimation recipe

e Construct reduced basis: Find a set of templates that can reproduce every template in the model

space to a certain specified precision.
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Reduced Order Quadratures

3) Fast likelihood computations _
Online

*The cost of evaluating integrals scales lineally as the # of RBs m

N

(h(N)]s)rog = 4R D>~ weh(Fis ) where  wj =Y s*(fi)ej (fu) ATIAS

k=1 k=0
ROQ parameter estimation recipe

e Construct reduced basis: Find a set of templates that can reproduce every template in the model

space to a certain specified precision.

¢ Find empirical interpolation points: Find a set of points at which to match templates onto the basis.
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Reduced Order Quadratures

3) Fast likelihood computations _
Online

*The cost of evaluating integrals scales lineally as the # of RBs m

N

(h(N)]s)rog = 4R D>~ weh(Fis ) where  wj =Y s*(fi)ej (fu) ATIAS

k=1 k=0
ROQ parameter estimation recipe

e Construct reduced basis: Find a set of templates that can reproduce every template in the model

space to a certain specified precision.

¢ Find empirical interpolation points: Find a set of points at which to match templates onto the basis.

e Construct signal specific weights: Compute the weights to use in the quadrature rule once data has

been collected. [ Selailfs)
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Reduced Order Quadratures

3) Fast likelihood computations _
Online

*The cost of evaluating integrals scales lineally as the # of RBs m

N

(h(N)]s)rog = 4R D>~ weh(Fis ) where  wj =Y s*(fi)ej (fu) ATIAS

k=1 k=0
ROQ parameter estimation recipe

e Construct reduced basis: Find a set of templates that can reproduce every template in the model

space to a certain specified precision.

¢ Find empirical interpolation points: Find a set of points at which to match templates onto the basis.

e Construct signal specific weights: Compute the weights to use in the quadrature rule once data has

been collected. [ Selailfs)

e Carry out parameter estimation: Evaluate likelihood/posterior over parameter space using ROQ rule

and, e.g., MCMC.
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Parameter Estimation
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SNR

Method

ROQ Parameter Estimation: Burst GW waveform

Two parameter case - burst width and central frequency.

Recovered Values

fo

(8’

Full
ROQ

0.189 = 0.095
0.189 = 0.095

0.831 =0.194
0.831 =0.194

Full
ROQ

0.172 = 0.081
0.172 = 0.081

0.803 = 0.136
0.803 £+ 0.136

Full
ROQ

0.168 + 0.075
0.168 = 0.075

0.800 = 0.108
0.800 = 0.108

Full

0.212 = 0.051
0.212 = 0.051

0.872 = 0.091
0.872 = 0.091

ROQ

Marginalised posterior distributions are indistinguishable and pass KS test with p<10-€.

Factor of >20 speed up in MCMC run time.

1 T T T - 1
Full ya

0.0 | ROQ / 1 0.9

0.8 Vf . 0.8
0.7 : . 0.7
0.6 ji . 0.6
05 / § 05
0.4 / . 0.4
0.3 . 0.3
02 . 02

/
01 - /
/

0/ 1 1 1 1
05 07 09 11 13 15

A Canizares et al PRD 2013
Cardiff University
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ROQ Parameter Estimation: Burst GW waveform

Full parameter space: 4D case A, a, fo, .
. Amplitude which is multiplicative: Use same ROQ rule.

. Coalescence time: Introduces frequency-dependent phase shift. However, .=0 ROQ rule works

well enough:

(8, h(-3tc)) = w(te)Th(F;0) = w(0)Th(F;0) + ¢, Ouw(t.)"

|, h(F50)+0(#)

In the burst case the basis built for & = 0 works well for non-zero L.

accuracy of t. = 0 rule for non-zero t.

on error
—

grati

max inte

0.1 0.2
2 3
time of arrival (s)

Canizares et al PRD 2013
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ROQ Parameter Estimation: Burst GW waveform

Full parameter space: 4D case A, a, fo,tc

. Amplitude which is multiplicative: Use same ROQ rule.

. Coalescence time: Introduces frequency-dependent phase shift. However, .=0 ROQ rule works

well enough:

(5, h(-;te)) = wlte)Th(F;0) = w(0)Th(F;0) + t.

Ow(te)T
Ot

t.=0

In the burst case the basis built for & = 0 works well for non-zero L.

SNR Method

Jo

Recovered values

0}

te

A

Full
ROQ

S

0.217 + 0.069
0.217 = 0.068

0.896 + 0.194
0.897 + 0.196

0.068 + 0.104
0.069 =+ 0.104

1.704 = 0.379
1.702 = 0.375

Full
ROQ

10

0.212 = 0.048
0.209 £ 0.050

0.875 £ 0.132
0.866 + 0.132

0.084 + 0.053
0.085 £ 0.052

2.362 + 0.278
2.387 = 0.287

Full
ROQ

20

0.225 + 0.029
0.224 = 0.029

0.891 + 0.093
0.892 = 0.093

0.092 + 0.028
0.093 = 0.028

2.944 + 0.176
2.944 = 0.177

Full
ROQ

40

0.248 £ 0.009
0.248 = 0.009

0.981 £ 0.041
0.981 =+ 0.042

0.097 = 0.016
0.097 = 0.016

3.471 £ 0.157
3.471 = 0.157

Priscilla Canizares

h(F;0) + O(t?)

accuracy of t. = 0 rule for non-zero t.

on error
—

grati

max inte

0.1

0.2

2

3

time of arrival (s)

Canizares et al PRD 2013
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ROQ Parameter Estimation: Burst GW waveform

Full Likelihood ROQ Likelihood

0608 1 1.2

0.3

= 0.2

0.1
0608 1 1.2

0608 1 1.2
a

Canizares et al PRD 2013
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ROQ Parameter Estimation: Burst GW waveform

MCMC Timing

Speed-up

i
4 ‘ | ---Four parameters

10
# MCMC points

L EpSisenes

# MCMC points

Priscilla Canizares (@ Cardiff University



On going work: TaylorF2 waveforms  h(f,\) = Af~7/6¢ivas

Ui = 02 (f my, ma,te, o)

Waveform parameters \ = {ml, ma, te, ¢c}
A = A(mla m2)

Standard MCMC simulation can take days to months depending on the observation times and

sampling rates

Priscilla Canizares (@ Cardiff University



On going work: TaylorF2 waveforms  h(f,\) = Af~7/6¢ivas

F2 F2
\Iji(S.5 ) = \112(3.5 )(f> m1, M2, te, Pc)
Waveform parameters A = {m1, ma, t;, ¢}

./4 = A(ml, mg)

Standard MCMC simulation can take days to months depending on the observation times and
sampling rates

Expected speed-up, by comparing the ratio of N/m , is of 35. for early aLIGO (lower f= 40 Hz and

observation time Tobs = 32s). If lower f = 10 Hz is achieved then Tobs = 30 minutes for BNS signals, and
the speed-up will be 1()3!

Priscilla Canizares
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On going work: TaylorF2 waveforms  h(f,\) = Af~7/6¢ivas

F2 F2
Waveform parameters A = {m1, ma, t;, ¢}

./4 = A(ml, mg)

Standard MCMC simulation can take days to months depending on the observation times and
sampling rates

Expected speed-up, by comparing the ratio of N/m , is of 35. for early aLIGO (lower f= 40 Hz and

observation time Tobs = 32s). If lower f = 10 Hz is achieved then Tobs = 30 minutes for BNS signals, and
the speed-up will be 1()3!

Issue: How to handle tc

« Move the fc factor ei%ftc into the weight term, this avoids increase the number of RB due to a new

(extrinsic) parameter.

« Use the DEIM interpolant based on the fc = 0 basis to (cheaply) evaluate the waveform at any

frequency point - split the frequency dimension in several subdomains.

This approach gives different weights for each fc value leading to increased memory and offline.

Priscilla Canizares Cardiff University



3 e r

On going work: TaylorF2 waveforms

First results at 0O-PN

Standard

1.9956 ‘tI .9962

Priscilla Canizares (@ Cardiff University



Further applications

e Sine-Gaussian searches are fast anyway - real advantage of ROQ is for

expensive likelihoods.

e Method applies to any application in which overlaps/integrals need to be

computed. Could also use it to speed-up searches over template banks, etc.

e Approach is not specific to gravitational wave applications - can be used for
any data analysis problem in which likelihood overlap integrals need to be

computed.

Priscilla Canizares (@ Cardiff University



Summary

e ROQs speed-up likelihood evaluations for parameter estimation of a model

. Construct reduced basis for model space.

. Identify a set of empirical interpolation points at which templates are required to

match basis.

. Construct a reduced order quadrature rule that reduces integral to a linear

combination of template evaluations at the EIM points.

* In a gravitational wave data analysis context, have shown factors of ~20 speed-

up for a toy model of sine-Gaussian waveforms.

e Now exploring application to compact binary coalescences and see speed-ups

of a factor ~35 to 1,000.

Priscilla Canizares Cardiff University
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