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What is back-reaction in cosmology? 

Cosmological back-reaction refers to the difference in large-scale 
expansion between a universe filled with evenly distributed matter, 
and a universe filled with clustered (or lumpy) matter. 

 

 

It is important to understand because: 
 

a) Understanding the errors in precision cosmology requires 
understanding all of the possible sources of error in our models. 

 

 

b) The discovery of dark energy, and its associated problems, 
motivates ensuring that we fully understand the models we use to 
interpret the data. 2 
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Top-down vs. bottom-up approaches 
to cosmological modelling 

 

Top-down involves: 

1. First specifying symmetries, or some other properties, that are 
obeyed (in some statistical sense) on large scales. 

2. Finding solutions of Einstein’s equations that exhibit those 
symmetries or properties (usually with continuous matter fields). 

3. Including structure by perturbing these solutions. 
 

Bottom-up involves: 

1. Considering first the constituent parts of the model being 
constructed (galaxies, or clusters of galaxies, for example). 

2. Solving Einstein’s equations in the vicinity of these small parts. 

3. Constructing a cosmological model from these building blocks, 
and/or finding ways of extracting information about the 
cosmological evolution that emerges on large-scales. 
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Formalism of top-down approach 
• Spatial homogeneity and isotropy imply: 

 

 
• Einstein’s equations give:                                        & 
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Results of top-down approach 

• The top-down approach leads to a model 

    of the universe that is dominated by its 

    dark components: 

 

 

 

 

• Difficulties for this model: 
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i. What are dark matter and dark energy? 
ii. Why do they have the properties they are observed to have? 
iii. How should the homogeneous and isotropic background be chosen? 
iv. Should the evolution of an average geometry obey Einstein’s equations? 
v. Is it okay to treat the matter in the Universe as a fluid? 



Examples of bottom-up approaches 

• Lindquist & Wheeler (1957): An approximate, non-perturbative 
Wigner-Seitz-like construction. 

• Zalaletdinov (1992) & Buchert (2000): Approaches based on 
averaging geometric quantities and matter fields. 

• Clifton (2011): A model based on matching together different weak-
field regions at suitable junctions. 

• Bentivegna et al. (2012) & Yoo et al. (2012): Application of 
numerical relativity techniques to cosmology. 

• Clifton, Gregoris, Rosquist & Tavakol (2013): An exact treatment of 
submanifolds in a universe with discretized matter content. 

• Etc. etc.  
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Program 

The outline of this work is to do the following: 

 

1. Evenly distribute some point-like masses on a topological 3-sphere. 

2. Solve the constraint equations on an initial 3-space. 

3. Choose some curves in this space that one might consider using to 
track the large-scale behaviour of the space. 

4. Evolve these curves forward in time from the initial hyper-surface. 

5. Compare the length of these curves to a Friedmann universe that 
contains the same total mass. 
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Tiling a sphere (in 2D) 
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Tiling a sphere (in 3D) 
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Example: A (Hyper)-Cube 

10 



Program 

The outline of this work is to do the following: 

 

1. Evenly distribute some point-like masses on a topological 3-sphere. 

2. Solve the constraint equations on an initial 3-space. 

3. Choose some curves in this space that one might consider using to 
track the large-scale behaviour of the space. 

4. Evolve these curves forward in time from the initial hyper-surface. 

5. Compare the length of these curves to a Friedmann universe that 
contains the same total mass. 

11 



Geometrostatics, in 
asymptotically flat space 
Imposing time-symmetry about an initial hyper-surface gives: 
 

 

where 
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Geometrostatics, in 
asymptotically flat space 
Embedding diagram for 

one black hole: 

 

 

 

 

 

For two black holes: 
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Geometrostatics, on a 3-sphere 

Imposing time-symmetry about an initial hyper-surface now gives: 

 

 

where                          
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Geometrostatics, on a 3-sphere 
Embedding diagram now looks like: 
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Choosing curves in a lattice cell 
Consider an individual cell: 

 

 

 

 

 

 

 

 

 

 

Red curve is the length of a cell edge. 

Green curve is the distance from the centre to the middle of a cell face. 

Blue curve is the distance from the centre to a corner. 
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1+3 Decomposition 
Take a congruence 

of time-like curves: 

 

 

 
 

Perform irreducible decompose to get kinematic quantities: 
 

 

 

where                                   and                           . 
 

In vacuo, the non-zero parts of the curvature tensor can then be written: 
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Symmetries around subspaces 
Consider n cells meeting  

at a cell edge: 

Symmetries: 

• There is an n-fold rotational symmetry 
      (implies local rotational symmetry) 

• The are n, or n/2, reflective symmetries 
      (rotational symmetry then implies no  
       preferred orientation) 

1 

2 

3 
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These symmetries imply that the only independent, non-zero geometric quantities  
on these curves are 

 

 

 

The Ricci and Bianchi identities then give 

 

 

and 

 

 

 

 

 

 

which are the equations for LRS class II spacetimes. 

Restrictions on geometric quantities 
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Cosmological equations 

First define: 

 

 

 

The evolution equations then become: 

 

                                    

 

 

Which give the Friedmann constraint, and proper length of an edge as: 
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Evolution of an element of an edge 

 

 

 

 

 

 

 

 

 

 
Red curves are for the scale factor along an edge. 

Black-dashed curves are for the scale factor perpendicular to an edge. 
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Effective energy density,  
along an edge 
For the 8-black hole universe: 
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Effective energy density,  
along an edge 
For the 600-black hole universe: 
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Evolution of a cell edge 

 

 

 

 

 

 

 

 

 

Key: 5, 8, 16, 24, 120, and 600 black holes 

        (black-dashed line is FLRW)  
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Hubble rate, and deceleration parameter 

Key: 5, 8, 16, 24, 120, and 600 black holes 
        (black-dashed line is FLRW)  
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Effective energy density,  
through a cell face 
For the 8-black hole universe: 
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Evolution of curve through a cell face 

Key: 5, 8, 16, 24, 120, and 600 black holes 
        (black-dashed line is FLRW)  
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Effective energy density,  
through a corner 
For the 8-black hole universe: 
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Evolution of curve through a corner 

Key: 5, 8, 16, 24, 120, and 600 black holes 
        (black-dashed line is FLRW)  
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Summary 

• We have investigated the properties of closed universes that contain a finite 
number of regularly spaced black holes. 

• The scale of these universes, at their maximum of expansion, is a function of 
the number of black holes present. 

• The evolution of the edges of cells evolve away from the maximum of 
expansion in a similar way to a k=1, dust-filled FLRW universe. 

• Away from the maximum of expansion the cell edges are accelerating, and 
remain non-singular forever. 

• The curves that connect black holes collapse to anisotropic singularities at all 
points in space (except at cell edges). 

• The horizon separation distance can either diverge (if the horizon goes 
singular), or vanish (is the horizon reaches a region of low curvature). 

• Not all behaviour converges towards that of a FLRW model as the number of 
black holes is increased. 
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