Understanding Precession Effects in Inspiral Waveforms

> Andrew Lundgren AEI Hannover

Plan

- I mostly work with post-Newtonian, inspiral-only precessing waveforms
- Have some neat analytic results, and a good understanding of what's going on
- Maybe these insights will be useful in the more difficult IMR and NR problems
- Plus I wanted to visit the awesome people here

What am I working on?

- Working towards an aLIGO NSBH search
- Derived template bank for aligned-spin
- Now testing aligned-spin search
 - Worries about background unfounded
 - Computing issues are the big problem
- Simultaneously working toward a single-spin precession search
 - Analytic amplitude and mismatch predictions
 - Efficient Fourier-domain precessing waveform

Collaborators

- Tito Dal Canton, Alex Nitz two awesome grad students
- Ian Harry
- Drew Keppel
- Alex Nielsen
- Evan Ochsner
- Frank Ohme
- Richard O'Shaughnessy
- Duncan Brown, Ben Owen, Badri Krishnan

TaylorF2

Simplest inspiral waveform

$$\widetilde{h}(f) = \mathcal{A} f^{-7/6} e^{i\Psi(f)}$$

Phase:

$$\Psi(f) = \lambda_0 v^{-5} + \lambda_2 v^{-3} + \lambda_3 v^{-2} + \ldots + \phi_c + 2\pi f t_c$$

plus terms like $v^k \log^\ell v$ at higher order.

Plug in $v = (\pi M f)^{1/3}$ and get a completely frequency-domain waveform.

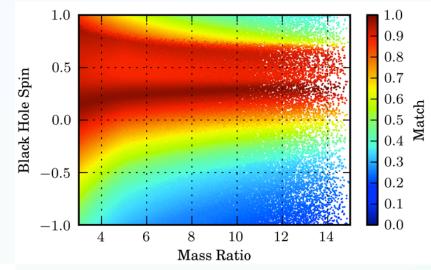
Time-domain waveforms

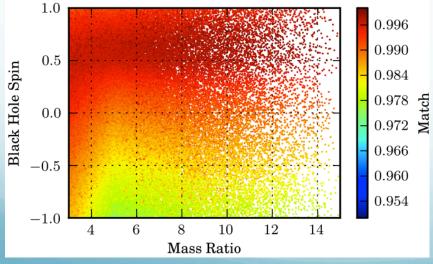
- TaylorT4 is the other common approximant
 - Time domain rather than frequency domain
 - ODE for dv/dt gives v(t) and $\Phi(t)$
 - Not analytic, slow
- Easy to add precession in time domain
 - Just evolve L, spins, GW emission aligned with instantaneous orbit
 - LIGO calls this SpinTaylorT4

Unfaithfulness and Ineffectualness

- Compare TaylorF2 aligned-spin template
- Precessing SpinTaylorT4 signal
- They don't agree
 - The effect of the precession?
 - Or the difference between the approximants?
- Ajith et.al. 1210.6666 say it's the approximant
- We didn't agree made SpinTaylorT2

SpinTaylorT2

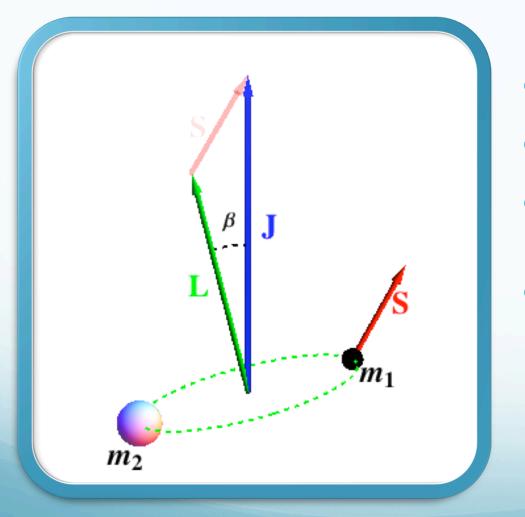

- T4 defined by power series for dv/dt
- F2 defined by power series for dt/dv
 - Direct integration gives t(v)


• So we used
$$\frac{dv}{dt} = 1/\frac{dt}{dv}$$

 For aligned spins, T2 is faithful to F2, but can also do precession

Difference between Approximants

- Match of T4 and F2
 - Good for equal mass and non-spinning
 - Bad elsewhere

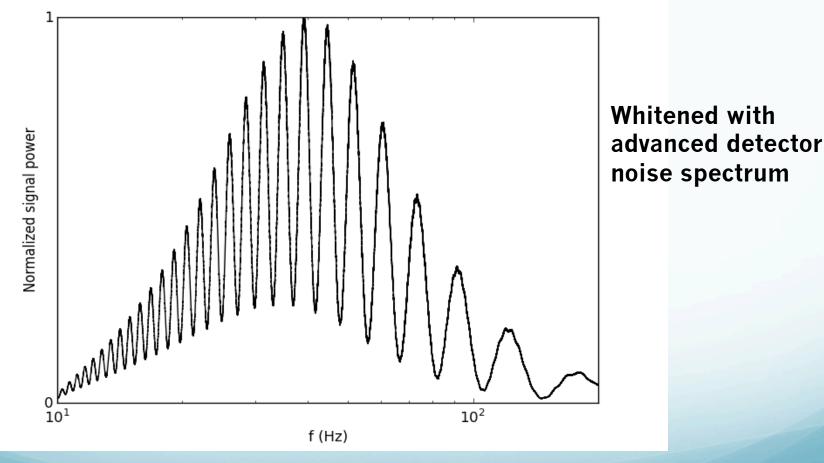

- Match of T2 and F2
 - Main mismatch is effect of termination

Nitz et.al. PRD 88, 124039 (2013) 1307.1757

Onward to Precession

- Difference between approximants is important
 - Especially with high spin and low mass ratio
- Precession is a separate issue
- We've got aligned spin under control
 - Template banks for F2 and T4
 - Search background is not scary
- Now let's tackle precession

Dynamics of Spin


Simple precession

- Single spin
- L precesses around J
- β simple function of frequency
- Assume:
 - Fixed **J** direction

ACST: Apostolatos et.al. PRD 49, 6274 (1994).

Cone Opening Angle B $\gamma = \frac{|\mathbf{S}|}{|\mathbf{L}|} = \frac{\chi_1 m_1^2}{m_1 m_2 (\pi M f)^{-1/3}}$ $\kappa = \hat{\mathbf{L}} \cdot \hat{\chi}_1$ $\cos\beta = \frac{1+\kappa\gamma}{\sqrt{1+2\kappa\gamma+\gamma^2}}$

Shape of the Waveform

See Buonanno et.al. PRD 67, 104025 (2003).

Separation of Timescales

- Emission is aligned with instantaneous L
- L precesses in a cone around J = L + S
- Orbit is much faster than precession

Brown, Lundgren, O'Shaughnessy PRD 86, 064020 (2012) 1203.6060

Rotation Operator

$$h_{2\,m'}(t) = \sum_{m=-2}^{2} \mathcal{D}_{m',m}(\alpha,\beta,\zeta) h_{2\,m}(t)$$

h(t) on left is precessing, right is aligned

Schmidt et.al. PRD 84, 024046 (2011)

Boyle et.al. PRD 84, 124011 (2011)

Precessing Inspiral

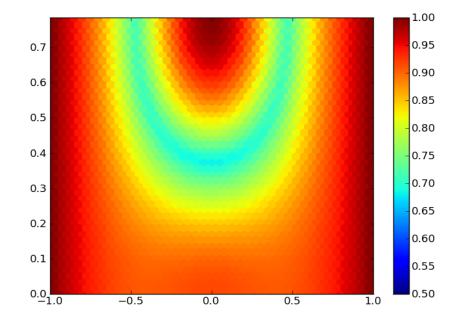
• Write
$$\widetilde{h}(f) = \mathcal{A}(f) \sum_{m=-2}^{2} E_m e^{i(m\alpha(f) + 2\psi(f) + 2\zeta(f))}$$

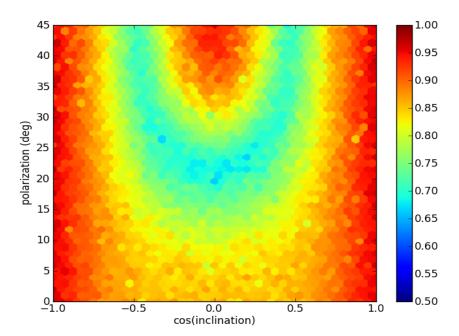
- Rotation operator decomposes into sum
- Alpha is monotonically increasing
- Do stationary phase approximation for each term in sum

$$SpinTaylorF2$$
$$\widetilde{h}(f) = \mathcal{A}(f) \sum_{m=-2}^{2} E_m e^{i(m\alpha(f) + 2\psi(f) + 2\zeta(f))}$$

- E_m depends only on orientation of **J** and on β
- α, β, ζ are closed form in velocity (or frequency)
 - Annoying: α and β are not pN expansions
- Like a sum of 5 non-precessing waveforms

Lundgren and O'Shaughnessy,

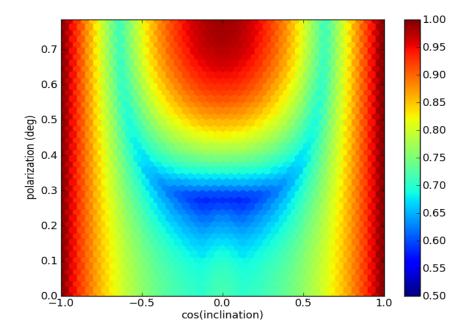

PRD, 1304.3332

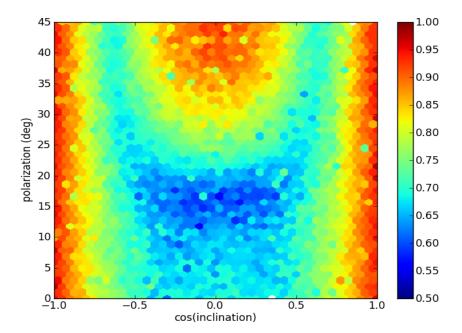

What is SpinTaylorF2 for?

- Very fast to compute, so use as templates or for PE
- Everything closed-form and frequency domain, so derive Fisher matrix
 - Template banks, coincidence metric
 - Jump proposals and best variables for PE
- Predict mismatch of aligned-spin search
- Ideas for precessing search

Predicting Mismatch

- Give me direction of J, and information to calculate β (masses, spin, L•S)
- I'll calculate the E_m the amplitudes of the five 'sidebands'
- Aligned-spin search will lock onto the loudest
- Can also predict amplitude as a function of orientation

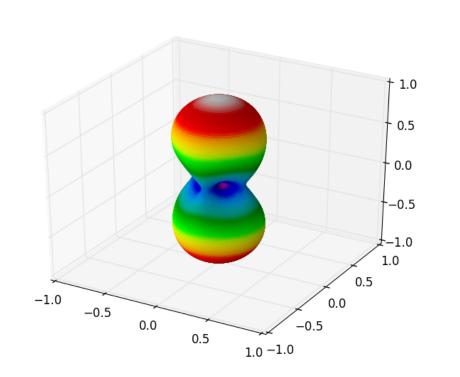




Prediction

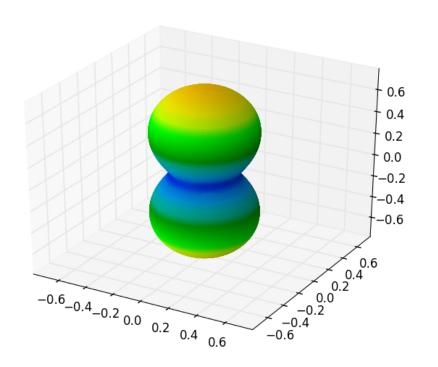
Match at $\beta = 30^{\circ}$

Simulation

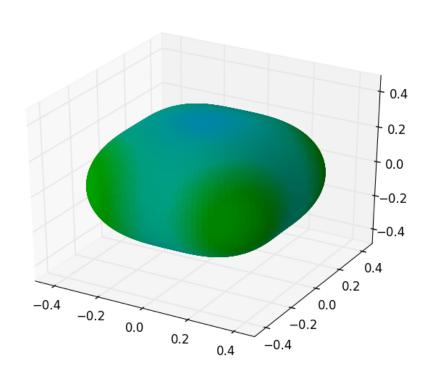


Prediction

Match at $\beta = 45^{\circ}$


Simulation

Non-Precessing Amplitude


- Z axis toward observer
- Amplitude shown by color scale, distance to origin

Amplitude for 30° cone

- Z axis toward observer
- Amplitude shown by color scale, distance to origin

Amplitude for 60° cone

- Z axis toward observer
- Amplitude shown by color scale, distance to origin

Previous Precessing Searches

- What stops precessing searches from working?
 - 1. Phenomenological waveforms didn't deal with nonprecessing part well enough
 - 2. No template bank or coincidence criterion
 - 3. Wrong priors over orientation?
 - 4. Computing cost
- We've solved 1 and 2
- Amplitude predictions help with 3
- Moore's Law and parallelization help with 4

Precessing Search Ideas

- Non-precessing template bank, like aligned spin but more phase freedom
 - Pick up each sideband separately
 - Reassemble sidebands usually only two dominate
- Use analytic Fisher matrix to make a stochastic bank
- Borrow ideas from the pulsar searches

Challenges

- Amplitude prior configurations (J and β) with highest amplitude must be weighted more strongly
- Data quality
 - Real data is always more difficult
 - Go beyond chisq
 - Or get aggressive on the instrument side
- Double spin
- Stretching validity of post-Newtonian
- Also want to add merger and ringdown