
Covariant Perturbations of LTB Spacetimes

G. Pratten1

C. Clarkson2

1Cardiff University, UK
2University of Cape Town, South Africa

31/01/14, Cardiff, Gravitational Physics Seminar

G. Pratten (Cardiff University) Covariant Perturbations of LTB Spacetimes 31/01/14, Cardiff 1 / 33



Standard Model of Cosmology
Model Building

Constructing a Universe model:

Gravitation→ General Relativity

Matter Content→ Energy-Momentum Tensor

Symmetries and Global Structure

Maximally symmetric Universe . . .

Isotropy→ The geometry is not dependent on direction!

Homogeneity→ The local geometry is the same at all points!

Isotropy at all points→ Homogeneity!

Homogeneity at all points 6= Isotropy!

Homogeneity and isotropy→ Friedmann-Lemaître-Robertson-Walker (FLRW)
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Standard Model of Cosmology
Homogeneity and Isotropy

Copernican Principle
We are not at a special location in the Universe!

Cosmological Principle
Smoothed on large enough scales, the Universe is spatially homogeneous and
isotropic!

Isotropy is well constrained by the CMB . . .

Homogeneity is not directly observable, it is infered!
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Standard Model of Cosmology
Isotropy and Homogeneity

Galaxy worldlines

Our past light cone

Our worldline

Surfaces of constant time

Sphere of constant distance

time

space
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Standard Model of Cosmology
Isotropy and Homogeneity

Testing Copernican principle is hard→We view the universe from one spacetime
event!

Exact Statement . . .
“If all observers measure their observables to be exactly isotropic, then the spacetime
is exactly FLRW.”

Realistic Statement . . .
“If most observers find their observables consistent with a small level of anisotropy,
then the metric of the Universe is roughly FLRW when smoothed over a suitably large
scale.”

Smoothing in GR?

Spatial gradients?

Can only test Copernican principle locally (sub Gpc) . . .

Isotropic and homogeneous→ Highly symmetric . . . the real Universe is not!

G. Pratten (Cardiff University) Covariant Perturbations of LTB Spacetimes 31/01/14, Cardiff 5 / 33



Standard Model of Cosmology
Isotropy and Homogeneity

Real Universe has structure that breaks homogeneity and isotropy→ Need
perturbation theory!
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Standard Model of Cosmology
FLRW Models

Either way, let’s recount the FLRW models . . .

Isotropy and homogeneity→ FLRW

Metric:

ds2 = −dt2 + a2(t)
[
dr2 + f2

K(r)
(
dθ2 + sin2 θdφ2)] (1)

Assume perfect fluid:

Tab = µuaub + phab (2)

Einstein’s Field Equations:

H2 =
κ

3
µ− K

a2
+

Λ

r
(3)

ä

a
= −κ

6
(µ+ 3p) +

Λ

3
(4)

Matter conservation:

µ̇ = −3H (µ+ p) (5)
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Inhomogeneity
Motivation

Relax global homogeneity→ First step to an inhomogeneous background

Isotropy constraints→ Spherical symmetry!

Assume radial inhomogeneity→ Energy-Momentum content is pure dust

Open Problems:
I Structure Formation
I Model Testing
I Understanding Observations
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LTB Spacetime
Introduction

Spherically symmetric, radially inhomogeneous.

Metric of Lemaitre-Tolman-Bondi (LTB) Spacetime

ds2 = −dt2 +X2(t, r)dr2 +A2(t, r)dΩ2 (6)

X(t, r) = f(r)a‖(t, r)) f(r) =
[
1− κ(r)r2]−1/2

(7)

Setting:

ra⊥(t, r) = A(t, r) a‖(t, r) = ∂rA(t, r)

Anisotropic expansion:

H‖(t, r) =
ȧ‖(t, r)

a‖(t, r)
; H⊥(t, r) =

ȧ⊥(t, r)

a⊥(t, r)
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A Tale of Two Formalsims...

We will seek to relate two different approaches to General Relativity:

Approach 1
2+2 Covariant Formalism:

Originally used for stellar/black hole perturbations

Gauge-invariant framework in place... not geometrically clear!

Approach 2
1+1+2 Covariant Formalism

Based on 1+3 formalism

Originally used for cosmological perturbation theory

Physically and geometrically meaningful... gauge-invariance natural!
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2+2 Formalism
(This may be a little heavy... )



2+2 Formalism
Introduction

Decompose full spacetime:

M =M2 × S2 (8)

Re-write LTB metric in 2+2 form1:

ds2 = −dt2 +X2(t, r)dr2 +A2(t, r)dΩ2

ds2 = gABdx
AdxB + r2γabdx

adxb

Energy-Momentum tensor:

tµν = diag(tAB(xC),Q(xC)r2γab) (9)

Einstein’s equations:

GAB = 8πtAB (10)

Gaa = 16πQ (11)

(12)

1A,B, ... ∈ {0, 1} and a, b, ... ∈ {2, 3}
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2+2 Formalism
Metric Perturbations

Introduce linear perturbations: gµν = g(0)
µν + hµν

Spherical symmetry→ tensor harmonic decomposition!

Perturbations decompose into polar (even) and axial (odd) perturbations

hµν =
∑
`m

[
(h`mµν )(P ) + (h`mµν )(A)

]
(13)
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2+2 Formalism
Metric Perturbations II

Expand perturbed metric into multipoles:

hPolar
µν =

(
hABY hAY:a

Symm. r2(KY γab +GY:ab)

)

hAxial
µν =

(
0 h̄AȲa

Symm. h Ȳab

)
(14)

Do similar for energy-momentum tensor . . .

Spherical symmetry→ Axial and Polar dynamically independent
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2+2 Formalism
Gauge Invariance

Want gauge invariant linear perturbations:

X→ X + δX (15)

Infinitesimal coordinate transformation:

xµ → xµ
′

= xµ + ξµ; ξµ � 1 (16)

Yields a new tensor field for the perturbation!

δX→ δX′ = δX + LξX (17)

Gauge invariant iff LξX = 0

Gauge invariants are physical!

Gauge Invariant Perturbations
Gauge-invariant metric perturbations↔ Symmetries of background spacetime
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2+2 Formalism
Multipole Expansion

How do we get our gauge invariant (GI) variables?

Gauge freedom: hµν ∼ hµν + (Lξg)µν

What do we do . . .

Construct gauge-invariant combinations of hµν → GMG2 X

Adopt the Regge-Wheeler (RW) gauge: h = hPolar
A = G = 0→ X

Can transform to any other gauge . . . RW is convenient!

2Gundlach and Martín-García (2000)
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2+2 Formalism
Fluid Frame Decomposition

Let’s start off in the polar sector!

Background unit vectors in M2:

ûA = (1, 0) ; n̂A = (0, X−1) ; εABu
B = −nA

In RW gauge hAB → kAB

Decompose into frame {uA, nA}

Metric Perturbations

kAB = η (−uAuB + nAnB) + φ (uAuB + nAnB) + ς (uAnB + nAuB) (18)

Convenient Variables

χ = φ− ϕ+ η (19)

EFE tell us that η → 0 for ` ≥ 2!

Substitute into equations, project onto {u, n} basis→ Scalar equations!
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2+2 Formalism
Gauge-Invariants

Structure of polar perturbations to the LTB metric3:

ds2 = − [1− (χ+ ϕ)Y ] dt2 − 2 ς X(t, r)Y dtdr

[1 + (χ+ ϕ)Y ]X2(t, r) dr2 + [1 + ϕY ]A2(t, r)dΩ2

Parameterise 4-velocity as per GMG4

uµ =

[
ûA +

(
wn̂A +

1

2
hABû

B

)
Y, vYa

]

ρ = ρLTB (1 + ∆Y )

3Clarkson, Clifton and February, (2009), JCAP, 06, 025
4Gundlach and Martín-García, PRD, 61, 084024
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2+2 Formalism
Master Equations
Polar Sector:

Master equations for ` > 1(η = 0) have been derived5

Evolution Equations (Not Full System)

−χ̈+ χ′′ + (. . . ) ς ′ = Sχ

−ϕ̈+ (. . . ) ς ′ = Sϕ

ς̇ = Sς

Constraint Equations

8πρw = ϕ̇′ + Cw

8πρ∆ = −ϕ′′ + (. . . ) ς ′ + C∆

16πρv = ς ′ + Cv

Frame derivatives: ḟ = uAf|A ; f ′ = nAf|A

Free Cauchy data: uFree = {χ, ϕ, ς, χ̇, ϕ̇}.
5Clarkson, Clifton and February, (2009), JCAP, 06, 025

G. Pratten (Cardiff University) Covariant Perturbations of LTB Spacetimes 31/01/14, Cardiff 19 / 33

http://iopscience.iop.org/1475-7516/2009/06/025/


2+2 Formalism
Master Equations

Axial Metric:

ds2 = −dt2 +X2(t, r)dr2 +A2dΩ2 + 2kAȲbdx
Adxb (20)

uµ = (ûA, v̄Ȳa) (21)

Axial Sector:

Π = εAB
(
kA
r2

)
|B

↔ Master Variable (22)

[
1

r2

(
r4Π

)
|A

]|A
− (`− 1)(`+ 2)Π = −16πεABLA|B (23)

˙̄v − c2s (2U + µ) ˙̄v = 0 ← c2s = 0 in LTB (24)

Free Cauchy data: uFree = {v̄,Π, Π̇}
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1+1+2 Formalism
(Now for something different... )



1+3 Formalism
Introduction

Partial tetrad formalism6 (Ehlers, Ellis, Hawking, . . . )
Project orthogonally to timelike congruence ua

ua

hab = gab + uaub

Einstein’s Field Equations↔
Ricci Identities:

2∇[a∇b]uc = Rabcdu
d ↔ Kinematic Evolution

Twice Contracted Bianchi Identites:

∇bT ab = 0↔ Conservation Equations

Bianchi Identities:

∇[aRbc]de = 0↔ Evolution of Weyl Tensor
6Note that indices here are defined as a, b, ... ∈ {0, 1, 2, 3}
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1+3 Formalism
Kinematics

Derivatives:

ḟ = ua∇af

Daf = h b
a ∇bf

Kinematics:

∇aub =

Acceleration︷ ︸︸ ︷
−uau̇b +

Expansion︷ ︸︸ ︷
1

3
Θhab +

Shear︷︸︸︷
σab +

Vorticity︷︸︸︷
ωab

Energy-Momentum:

Tab = µuaub + phab + 2q(aub) + πab
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1+3 Formalism
Why 1+3 Formalism?

1+3→ System of ODES involving 1+3 scalar quantities

Inhomogeneity→ Breaks simple structure

Non-zero vectors and tensors→ coupling terms!

Recover simple structure by another vector field ...
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1+1+2 Formalism
Geometrical Picture

Adopt formalism of Clarkson and Barrett7

Spacelike congruence na → further split of 1 + 3 equations
I Projection tensor onto 2-sheets orthogonal to ua and na:

ua

na

Nab = hab − nanb

Spacetime objects split into: Scalars , 2-Vectors , Transverse-Traceless 2-Tensors.

Supplement 1+3 equations with Ricci identity for na:
Rabc ≡ 2∇[a∇b]nc −Rabcded = 0.

7Clarkson and Barret, (2003), CQG, 20, 3855
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1+1+2 Formalism
Splitting Spacetime Again

Example: Decomposition of 3-Vectors:

ψa = Ψna + Ψa

Term parallel to na

Term lying in sheet orthogonal to ua and na

Example: Decomposition of 3-tensors:

ψab = Ψ(nanb −
1

2
Nab) + 2Ψ(anb) + Ψab. (25)

New Derivatives:

ψ̂a...b = neDeψa...b

δeψa...b = N j
e N

f
a ...N g

b Djψf...g
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1+1+2 Formalism
The Variables

A Useful Dictionary...

Θ Expansion of ua

aa Sheet Acceleration
φ Sheet Expansion
ξ Rotation of na → Twisting of Sheet
ζab Shear of na → Distortion of Sheet
A Radial component of acceleration of ua

Aa Acceleration of ua lying in the sheet orthogonal to na

αa Acceleration of na

{E , Ea, Eab} Projections of Electric Weyl Tensor Eab
{H,Ha,Hab} Projections of Magnetic Weyl Tensor Hab
µ Energy Density
{Σ,Σa,Σab} Projections of Shear Tensor σab
{Π,Πa,Πab} Projections of Anisotropic Pressure ωa

{Ω,Ωa} Projections of Vorticity Vector ωa

{Q,Qa} Projections of Heat Flux qa
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1+1+2 Formalism
Wave Equations

A 1+1+2 Approach8:

LTB Spacetime characterised covariantly by:

XLTB = {E , φ, µ,Θ,Σ, µ̂, Θ̂} → O[0] (26)

Background Equations

ẊLTB = . . . (27)

X̂LTB = . . . (28)

CXLTB = . . . (29)

Linear perturbations→ Full 1+1+2 equations→ Kill terms O[2] and higher . . .

Set of gauge-invariant variables, Υ:

Υa = δaXLTB (30)

Gauge invariance guaranteed by the Stewart-Walker Lemma!
8Pratten and Clarkson, In Prep.
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1+1+2 Formalism
Master Equations
Linearised equations in LTB9:

Harmonic decomposition

Scalar, Vector and Tensor Harmonics

Ψ = ΨS Q (31)

Ψa = ΨV Qa + Ψ̄V Q̄a (32)

Ψab = ΨT Qab + Ψ̄T Q̄ab (33)

Perturbation variables:

Φ = {Hab, Eab, ζab,Σab, Ea, . . . }T

Linearised equations:
γΦ̇ + λΦ̂ = ΓΦ

Master equation:

−Ẅ{ab} +
ˆ̂
W{ab} + (...)Ŵ{ab} + (...)Ẇ{ab} + δ2W{ab} + (...)W{ab} = Sab

9Pratten and Clarkson, In Prep.
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Correspondence

Correspondence between 2+2 and 1+1+2→ Best of both worlds!10

Ansatz for radial vector:

nµ =

[
n̂A +

(
wûA +

1

2
hABn̂

B

)
Y, gYa

]
(34)

GR→ Freedom to choose frame basis in tangent space!

g→ Frame degree of freedom!

Decompose 2+2 perturbations into 1+1+2 variables . . .

ET = −1

2

(χ+ ϕ)

r2
(35)

H̄T = −1

2

ς

r2
(36)

ΣT =
v

r2
(37)

ζT =
g

r2
(38)

. . .

10Pratten and Clarkson, In Prep.
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1+1+2 Formalism
Master Equations

Axial Sector:11

Master Variable

Wab = r2δ{aδb}H (39)

WT = Π (40)

Master Equation

−Ẅ +
ˆ̂
W + Ẇ

(
2Σ− 7

3
Θ

)
+ 3φŴ −

[
2µ+

` (`+ 1)

r2
− 6

r2

]
W = − 2

r2
̂[µΩr2] (41)

Axial gravitaitonal waves sourced by density and vorticity gradients!

11Pratten and Clarkson, In Prep.
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1+1+2 Formalism
Master Equations

Polar Sector (Preliminary)12

Master Variables

χ = 2ET
[
2K − ` (`+ 1)

r2

]
+

3

2
ΣφH̄T +

H̄V
r

[
3Σ− 4

3
Θ

]
+ 2φ

EV
r
− 2

3

MV

r
+ 2

XV
r

ϕ = −2ET − χ
ς = −2HT

χ is GW degree of freedom→ couples to matter terms!

ϕ encapsulates matter content!

ς → GW degree of freedom and frame dragging!

System of 2+2 equations numerically solved! → February et al, arXiv:1311.5241

Need tensor to unify polar and axial sectors! →Work in progress . . .

12Pratten and Clarkson, In Prep.
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Conclusions
2+2 Formalism:

Construct perturbed metric for LTB spacetimes in 2+2 formalism
Construct 1+1+2 variables in terms of 2+2 variables
Find fundamental degrees of freedom to invert 1+1+2 variables
Now rewriting master equations for LTB in terms of 1+1+2 variables

1+1+2 Formalism:
System of propagation, evolution and constraint equations
Construct gauge-invariant variables
Construct wave equations
Now isolating master variables

Applications:
Propagation of gravitational waves in inhomogeneous background
Structure formation
Baryon acoustic oscillations, integrated Sachs-Wolfe, ...

Also:
Correspondence works in Schwarzschild!
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