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OUTLINE

> Brief introduction to structure formation

> Semianalytic hierarchical model for galaxy
and massive black hole (MBH) evolution

> Evolving the MBH spins

> Probing MBH binaries (MBHBs) with
gravitational wave observations
*eLISA
*Pulsar Timing Arrays



1- In all the cases where the inner core of a galaxy has been resolved (i.e.
In nearby galaxies), a massive MBH has been found in the center.

2- MBHs are believed to be the central engines of Quasars: the only viable
model to explain this cosmological objects is by means of gas accretion
onto a MBH.

3- Quasars have been discovered at z~7,

their inferred masses are ~10° solar masses!

THERE WERE 10° SOLAR MASS BHs
WHEN THE UNIVERSE WAS <1Gyr OLD!!!

Outstanding question in

contemporary astrophysics:
to understand the MBH
formation and evolution
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MBHs follow the hierarchy
of galaxy formation and evolve
their mass and spin through

a sequence of gas accretion episodes
and mergers with other MBHSs




Too fast for chaotic, to slow for
coherent: the missing link between
accretion, massive black hole spins

and galaxy kinematics

(AS et al. 2014, in collaboration with
Enrico Barausse, Massimo Dotti and Elena Rossi)



Astrophysical BHs are described by two parameters: mass (M) and
spin (a)

MBH spin is poorly known, but are very important for a number of
reasons:

-regulate the mass-radiation conversion during accretion
-are probably responsible for launching relativistic jets (feedback)
-strong impact on gravitational wave emission and recolis

-may provide stringent tests of GR and the BH solution
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We adapt the model of
Barausse (2012)

Semianalytic galaxy formation
model including:

-hot-cold gas phase

-star formation

-disk instabilities

-galaxy and MBH
mergers+recoils

-MBH feeding+feedback

Can keep track of the galaxy
morphology:

Spirals/ellipticals/irregulars
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BH frame dragging exert a torque onto the disk

Each disk annulus precess around the BH

Annuli at different distance precess at different speed
Friction between annuly make them align

The BH spin and disk angular momentum align

~10° yrs

SPH simulation from
Nelson & Papaloizou 2000;
see also Dotti, Volonteri,
Pallini, Colpi, Perego...




IfJ LSS then the disk and

the BH can actually anti-aling
(King et al. 2005)

Condition for anti-alignment




Clumpy environment:

-small clouds coming from ali
directions

-J . <<S

disk bh

50% of the clumps align,
50% of the clumps antialign

Chaotic accretion--->spindown

VS

Massive coherent structure
-single circumnuclear disk
'Jdisk>>sbh

Single prolonget accretion event

Coheren accretion--->spinup




The two simple models were implemented by Berti and Volonteri (2008).
Two distinct outcomes:

-Coherent scenario: most of the SMBH are maximally spinning at all redshift
-Chaotic scenario: most of ths SMBH have spin <0.1

Results are independent on galaxy morphology

Berti & Volonteri 2008



The spin evolution depend on the
relative fraction of clouds that
align/anti-align

W= it Jaisk > 2Jbn
w=F+ 34k (1 - F) if g < 2Jon.

bh

This fraction depends on the relative
importance of the coherent vs turbolent
motion of the clouds in the galaxy:

v=rotational velocity
o=velocity dispersion

The ratio v/o determines the
equilibrium spin of the MBH




Gas-driven s |::'| n evolution

Cold "QAS0" accrefion:
gas clouds have angular momentum
distribufion characterized by
isotropy parameter [
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_ _ _ Stellar dynamcis in ellipticals and
Large scale dynamics of spiral disks spiral bulges and pseudobulges
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Different accretion flow-galaxy dynamics connections:

-Disk model: v/o anchored to the large scale gas dynamics in spirals
and to the stellar dynamics in ellipticals

-Bulge model: v/o anchored to the stellar dynamics in the bulge both
Iin ellipticals and in spirals (no distinction bulge vs
pseudobulge)

-Pseudobulge model: v/oc same as Bulge but with distinction
bulge vs pseudobulge

-Coherent model: always prograde accretion (no connection with
galactic kinematics)

-Chaotic model: random accretion of small clumps (no connection
with galactic kinematics)
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-Measurement from reflection iron lines
-the flux come mostly from few Schw radii: it is very sensitive to the spin
-the higher the spin, the smaller is the ISCO and the broader is the line
(gravitational redshift)
-Measurements involve complex multi-parameter fitting procedures




Object name Galaxy type Z Lx|erg a‘l] feda  log(Myp[Mg)) spin adopted PDF

[HO707-495 - 00411 37x10%® 10  670+04 > 0.97 Aat [0.97.0.998]
Mrk1018 S0 0043 90x10¥ 001 8.15 580 flat [0.0.94]
NGC4031 SAB(rsihe  0.0023 3.0 x {J” 0.03 6.28 flat [0.99.0.908]
NGC3783 SB(iab 00097 1.8x10* 006  747L0.08 flat [0.88,0.998]
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-Measurement from reflection iron lines
-poor statistics: 20 objects at z<0.1
-select luminous (f_, >0.01) X-ray sources

-most of the systems are Syefert galaxies (spirals and lenticular)




We select a subsample compatible with the observed systems:
accreting SMBHs in spiral galaxies
My, [M] My, [Mo]
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Models fail badly when contrasted to observations




We select a subsample compatible with the observed systems:
accreting SMBHs in spiral galaxies
Mhh [Ma]
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The disk models is only marginally consistent with observations
(there are many outliers)

1]

=
f )

h E
F -

T I_I'_I—l"ﬂ—ﬂ—jE

o
o=
on
= f—




We compare the observed sample to the theoretical distribution by
performing a 2D (mass-spin) KS test

pseudobulge coherent | chaotic | fhumif I

‘-1~'~'L|m}'+ril'+n-=: E S S acc E S Sacc S+Eacc  S+Eacc
[ 10apy [ Gauss | 0.0015 00247 02468 0.0017 01237 0.1032 I"P IIT’I"* 1.2x10~"

1.. 20ay;, /Gauss | 0.0020 00271 03614 00017 0.1440 0.0081 8.7x10-%

[/ 30ay;, /Gauss | 0.0015 00302 03785 00017 0.1453  0.0018 |._+_II.J|._H...I.7 [.1x10-7

z = 0.5/ 10ay;, / Gauss | 0.0019 00197 0.2666 I"i II"!IT'] 0083 0.0835 00869 35x10-7
2 =1/10ay, /flat | 0.0034 00280 02336 0.1565 01030 00685 83x10-*

We compute the likelihood of the data given the models and the
odds ratio between different pair of models

(in a 2 model comparison test this tell which models is more likely to
generate the data and with what confidence)

psendobulge/disk
assumptions 08\ ,d  Ppseudobulge

1/ 10agy, / Gauss | 2.936 =().008 J
1/ 20a,;, / Gauss | 4.923 =().999 1.2 x ]IP‘ .
= 1/ 30apy [ Gauss | 5.006 ~().099 0.9 % 10~




Lensed quasar at z=0.66

a=0.87+0.06-0.15
Mbh=2*108 solar masses

Host is a spiral galaxy

Reis et al. 2014, Nature

Confidence limits on the
spin of RX J1131-1231

99.99%
99.73%

90.0%
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Lensed quasar at z=0.66

a=0.87+0.06-0.15
Mbh=2*108 solar masses

Host is a spiral galaxy
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Confidence limits on the
spin of RX J1131-1231
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Gravitational'wave
astrophysics:
the low frequency regime

.eLISA /NGO

J

Gravitational Wave Astronomy in Space



Consider a small metric perturbation

Juv = Nuv + Ay, L 1

The linearization of the EEs results in a wave equation

167G

The solution is a wave travelling
At the speed of light:
GRAVITATIONAL WAVES

They are proportional to the
Second derivative of the mass
quadrupol moment and they carry
an energy given by

GWs are transversal and have two
independent polarizations
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At the speed of light:
GRAVITATIONAL WAVES

They are proportional to the
Second derivative of the mass
quadrupol moment and they carry
an energy given by

GWs are transversal and have two
independent polarizations




Consider a small metric perturbation

Juv = Nuv + Ay, L 1

The linearization of the EEs results in a wave equation

167G
R

We need very massive
systems with varying quadrupole
moment: we need astrophysical binaries!
possibly BH binaries!

They are propores

Second derivative of the mass
quadrupol moment and they carry
an energy given by

i wod T o oo e o.s %,
e) F(g,-j- (f —) WQ’f (t —) GWs are transversal and have two
f N C/ ‘ independent polarizations
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We want compact accelerating systems
Consider a BH binary of mass M, and semimajor axis a

h ~ ~

a r ctr

In astrophysical scales

M Mpc

h~10"%
2 Jﬂ-l_lzl _D

10 M_ binary at 100 Mpc: h~10*, f<10°
10° M binary at 10 Gpc: h~10¢, <10
10° M binary at 1Gpc: h~10*, <10~



10 M_ binary at 100 Mpc: h~10*, f<10°
resolved 10° M_ binary at 10 Gpc: h~107, <10~
g’(c)alllt#gélsary 10° M_ binary at 1Gpc: h~10, f<10°
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eLISAsCGience

THE GRAVITATIONAL UNIVERSE

A science theme addressed by the ¢eLISA mission observing the entire Universe

The eLISA Consortium, arXiv:1305.5720



eLISAsCGience

THE GRAVITATIONAL UNIVERSE

A science theme addressed by the ¢eLISA mission observing the entire Universe

selected by ESA for L3 (2034)




B

-same orbit as
LISA

-1Gm armlength
-four laser links
-max 6 year
lifetime

/ ) A

eLISA is sensitive at mHz frequency, where
the evolution of MBH binaries is fast.

eLISA will detect MBH binary inspirals
and mergers.

Galactic binaries
resolved
verification
confusion

Inspirals
- BH binary
EMRI o]
|

M'Int =1 D? M@
1 minute

Characteristic strain amplitude

10= 102
Frequency (Hz)

Signal-to-noise ratio (SNR) ] 10



« When did the first black holes form in pre-galactic halos,
and what is their initial mass and spin?
« What is the mechanism of black hole formation in ga-

lactic nuclei, and how do black holes evolve over cosmic
time due to accretion and mergers?

« What is the role of black hole mergers in galaxy forma-
tion?
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« When did the first black holes form in pre-galactic halos,
and what is their initial mass and spin?

« What is the mechanism of black hole formation in ga-
lactic nuclei, and how do black holes evolve over cosmic
time due to accretion and mergers?

« What is the role of black hole mergers in galaxy forma-
tion?

~
b
>
0
S
:
e
A
9
@
Q
~
0
S




« When did the first black holes form in pre-galactic halos,
and what is their initial mass and spin?

« What is the mechanism of black hole formation in ga-
lactic nuclei, and how do black holes evolve over cosmic

time due to accretion and mergers?

« What is the role of black hole mergers in galaxy forma-
tion?

Baby Black Hole Adoption Certificate

lookback time (Gyr)




- black hole - black hole mergers
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using spinning full IMR waveforms)

Results of the eLISA science case:

>Individual sources:
-Individual (redshifted) masses to <1%
relative accuracy
-spin of the primary hole to <0.1 (in many
cases to <0.01)
-sky location to 10-1000 deg
-luminosity distance to <10% in most
cases
-no emphasis on multimessenger
astronomy

>Population studies:
-few detection will enable sensible
astrophysical statements about MBH
seeds and cosmic growth
-test made mainly on a discrete set of
models
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10 M_ binary at 100 Mpc: h~10*, f<10°
resolved 10° M_ binary at 10 Gpc: h~107, <10~
g’(c)alllt#gélsary 10° M_ binary at 1Gpc: h~10, f<10°
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Pulsars are neutron stars that emit regular burst of radio radiation

Pulsar timing is the process of measuring the time of arrival (TOA) of each
iIndividual pulse and then subtracting off the expected time of arrival given a
physical model for the system.

1- Obseve a pulsar and measure the TOA of each pulse

ZBmmcd radiation
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2-Determine the model which best fits the TOA data

The emission time at the pulsar is converted to the observed time at the Earth
modelling several time delays due to:

-coordinate transformations

-GR effects (e.g. Shapiro delay, PN binary dynamics)

-Propagation uncertainties (e.g. Atmospheric delay, ISM dispersion)



2-Determine the model which best fits the TOA data

P50 — 9% AL Ars — Ag

The emission time at the pulsar is converted to the observed time at the Earth
modelling several time delays due to:

-coordinate transformations

-GR effects (e.g. Shapiro delay, PN binary dynamics)

-Propagation uncertainties (e.g. Atmospheric delay, ISM dispersion)

3-Calculate the timing residual R
R=TOA-TOA

If your model is perfect, then R=0. R contains all the uncertainties
related to the signal propagation and detection plus the effect of
unmodelled physics, like -possibly- gravitational waves



The GW passage cause a modulation of <
the MSP frequency

rj}_ pulsar
nulsar =]
| .\\ /
H = = - \Earth_ Rake . ﬂ
The residual in the time of arrival of the T Rdse pay,
pulse is the integral of the frequency s

modulation over time

(Sazhin 1979, Helling & Downs 1983, Jenet et al.
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# of papers found on the ADS containing both
“pulsar timinng array” and “gravitational wave” in the title.
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Numbers multiply by a factor of 10 if you consider the abstracts



Consider a class of sources with differential number density d?n/dzdM
emitting an energy spectrum de/dinf

4G 1 dEgy
:n'rf/d/ dw rf\/I1+,rfh1f;

ffjf"# j; o
'“ B / dz / dzdMdnf, Mdlnf, h(fr)

For MBHBs dN/dInfLif -3

—2/3
he(f) = A ( ! )
yr

Stora(f) ~ he(f)/(2nf)

(Phinney 2001, Jaffe & Backer 2003, Wyithe & Loeb 2003, Sesana et al. 2004, Enoki et al. 2004)
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-sensitive to massive (>10°M_), cosmologically nearby (z<2) binaries:
complementary to the LISA range (AS et al. 2008, 2009).

-if a source can be individually resolved, its sky position can be pinned
down to ~1-50deg? accuracy (AS & Vecchio 2010). Promising prospects for
multimessenger astronomy (massive+nearby---> bright counterparts)
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There are, however, many other sources of red noise in pulsar timing: intrinsic
spin noise, DM effects, etc.
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This very red signal has a peculiar correlation pattern among different pairs of
pulsars, given by the quadrupolar nature
of gravitational waves

Other sources of red noise are uncorrelated!
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EPTA/LEAP (large European
array for pulsars)

NanoGrav (north American nHz
observatory for gravitational waves)
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van Haasteren et al 2011
5 EPTA pulsars
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5 EPTA pulsars
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Shannon et al 2013
* 6 PPTA pulsars
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van Haasteren et al 2011
5 EPTA pulsars
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Shannon et al 2013
6 PPTA pulsars

EPTA+PPTA+NANOGrav
all pulsars
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van Haasteren et al 2011
5 EPTA pulsars
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Shannon et al 2013
6 PPTA pulsars
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AS et al. 2008; AS et al. 2009; AS 2013
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6 PPTA pulsars
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van Haasteren et al 2011
5 EPTA pulsars

Shafinon et al 2013
6 PPTA pulsars
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Babak & AS 2012, Petiteau et al. 2013, Ellis et al. 2012

Individual SHNE

20 40 &0 8D Q0

_ Frequency (nHz]
Mumber of sources

-We recover the correct number of sources (nho false positive)
-We can determine the source parameters with high accuracy:
> SNR within few%
> sky location within few deg offset
> frequency at sub-bin level

-Extremely promising, needs test on more realistic situations




ELECTROMAGNETIC COUNTERPARTS

Tanaka et al. 2012, AS et al. 2012

MBHB+circumbinary disk

-Opt/IR dominated by
the outer disk. Steady?

-UV generated by the
Inner disks. Periodic
variability.

-X ray corona. Periodic
variability

-Variable broad emission
lines (in response to the
UV/X ionizing continuum)

-Double fluorescence
6.4keV Ko« iron lines

Credits: C. Roedig



Tanaka et al. 2012, AS et al. 2012

MBHB+circumbinary disk

-Opt/IR dominated by
the outer disk. Steady?

-UV generated by the
Inner disks. Periodic
variability.

-X ray corona. Periodic
variability

-Variable broad emission
lines (in response to the
UV/X ionizing continuum)

More at the HE

Seminar tomorrow

Credits: C. Roe(



Summary:
Spins:
BHs can align or antialign with their accretion disks

So far, two limiting models (coherent and chaotic accretion)
have been employed in the literature (with few exception)

We employ a semianalytic model for MBH and galaxy

evolution, together with phenomenological prescriptions that
anchor the properties of the accretion flow to the kinematics

of the host galaxy

While the coherent and chaotic models fail,
our models fully accounts for the measured MBH spins.

Gravitational waves:
Naturally emitted by MBHBs along the cosmic history
eLISA will see them across the Universe

PTA may lead to a direct detection in the next 5+ years
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