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Outline

● Lorentz violation in gravity: motivation, phenomenology & experimental 
constraints

● Lorentz violation implies violations of the strong equivalence principle:

The motion of neutron stars (the “sensitivities” and dipolar gravitational-wave 
emission) and constraints from pulsars.  Based on 

Yagi, Blas, Yunes, EB  arXiv:1307.6219, PRL in press;                                    
Yagi, Blas, EB, Yunes  arXiv:1311.7144, PRD in press

● Black hole solutions and universal horizons. Based on 

EB, Jacobson & Sotiriou PRD 83, 124043 (2011);                                            
EB and Sotiriou CQG 30 244010 (2013)
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Lorentz violation in gravity: why?

● LV may give better UV behavior (Horava), quantum-gravity completions 
generally lead to LV

● LV allows MOND-like (Bekenstein, Blanchet & Marsat) or dark-energy-
like phenomenology

● Strong constraints in matter sector, weaker ones in gravity sector 
(caveat: constraints expected to percolate from gravity to matter sector)

● Solar system/isolated & binary pulsar experiments historically used to 
constrains LV in weak field (1 PN) regimes (“preferred-frame 
parameters”: Nordvedt, Kramer, Wex, Freire, Shao, Damour, Esposito 
Farese...), but surprises may happen in stronger-field regimes
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Einstein-aether theory

● We want to specify a (local) preferred time “direction”          
               timelike aether field       with unit norm 

● Most generic action (in 4D) quadratic in derivatives is  
given (up to total derivatives) by 

● To satisfy weak equivalence principle, matter fields couple 
minimally to metric (and not directly to aether)

U μ
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Khronometric gravity

● To specify a global time, U must be hypersurface orthogonal 
(“khronometric” theory) 

● Because U is timelike, T can be used to as time coordinate

● 3 free parameters vs 4 of AE theory (because aether is 
hypersurface orthogonal)
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Khronometric vs Horava gravity

● L
4
 and L

6
 contain 4th- and 6th-order terms in the spatial derivatives

● Lower bound on M* depends on details of percolation of Lorentz 
violations from gravity to matter:  from Lorentz violations in gravity 
alone,                         , but precise bounds depend on percolation

● Theory remains perturbative at all scales if

● Terms crucial in the UV, but unimportant astrophysically, ie error 
scales as
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Constraints on the coupling constants: 
the Parametrized Post-Newtonian expansion

● At 1PN, theories = to GR except for preferred-frame parameters α
1
 and α

2 

which are zero in GR but not in LV gravity

● Solar system & pulsar experiments require

     Imposing α
1
 = α

2 
= 0 reduces couplings from 4 to 2 (AE theory): c

+ 
, c_ …

… and from 3 to 2 (khronometric theory): λ , β

● c
+ 

, c_ and λ , β enter at PN order > 1 (they are “strong-field couplings”)
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Constraints on the coupling constants: stability

● AE theory has propagating spin-0, spin-1 and spin-2 
gravitational modes

● Khronometric theory has spin-0, spin-2 modes
● For classical/quantum stability, real propagation speeds and 

positive energies
● Propagation speed must be larger than speed of light to 

avoid gravitational Cherenkov radiation
● Well posedness proved in flat space and in spherical 

symmetry
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Stability+Cherenkov constraints

AE theory Khronometric
theory

GR

GR
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How about cosmological constraints?

● Weak for AE theory

● For khronometric theory,

 

and BBN requires

● No constraints from CMB in 
khronometric theory yet

 

∣G N /GC−1∣< 1 /8
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Why are astrophysical effects expected?

● Matter couples minimally to metric, but metric couples non-
minimally to aether effective matter-aether coupling         
in strong-field regimes

● For strongly gravitating body (e.g. neutron star), binding energy 
depends on velocity relative to the aether                                  
(i.e. structure depends on motion relative to preferred frame, as 
expected from Lorentz violation!)

● Gravitational mass depends on velocity relative to the aether

         

Violations of strong equivalence principle (aka Nordtvedt effect 
in Brans Dicke theory, scalar tensor theories, etc)

Smatter=Σi∫mi (γ)d τi

γ=Uμu
μ

ua
μ ∇μ(mau

ν)=−
d ma
d γ

uμ ∇ νU μ
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Whenever strong equivalence principle (SEP) is violated, dipolar 
gravitational-wave emission may be produced

● In GR, dipolar emission not present because of SEP + conservation 
of linear momentum

● If SEP is violated,

● Dipolar mode might be observable directly by interferometers, or 
indirectly via its backreaction on a binary's evolution

Why are astrophysical effects expected?

h∼ 1
R
d
dt

[m1(γ) x1+m2(γ) x2]∝(d logm1

d log γ
−
d logm2

d logγ )

not a wave!
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A PN analysis: the violation of the SEP

Define “active” gravitational mass

and “strong-field” gravitational constant

Modified Newton's law:

body's “sensitivities”

Foster 2007
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A PN analysis: the dissipative dynamics
● GWs carry energy away from binaries

● As binary's binding energy decreases, period decreases

S=(s1m2+ s2m1)/M
M=m1+ m2

μ=
m1m2

M
,    sA=σ A/(1+ σ A)

are functions of the coupling constants                or            ;

Dipole

Quadrupole

in GR               (Foster 2007, Yagi, Blas, EB, Yunes 2013, Yagi, Blas, Yunes, EB 2013)
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Why is this interesting?

Binary pulsars are the strongest test of GR to date 

PSR B1913+16 
(Weisberg & Taylor 2004)

To calculate rate of change of 
orbital period we need sensitivities
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The sensitivity of neutron stars
(Yagi, Blas, Yunes, EB 2013; Yagi, Blas, EB, Yunes 2013) 

Calculation is non trivial!                                                             
Requires solving numerically for stars in motion relative to aether, to first 
order in velocity (thanks to Gauss theorem)

C
* 
= M

* 
/ R

*

Red = weak field prediction   
(Foster 2007)
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Constraints from binary pulsars

We choose pulsar-pulsar and pulsar-WD binaries with small 
eccentricities  (PSR J1141-6545, PSR J0348+0432, PSR J0737-3039, 
PSR J1738+0333), and impose that difference from GR is < data 
uncertainties
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Constraints from binary pulsars
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● Red = weak field prediction for α
1
= α

2
=0 (by requiring exactly same fluxes as GR)

● Combined constraints from almost-circular WD-pulsar and pulsar-pulsar systems 
    (PSR J1141-6545, PSR J0348+0432, PSR J0737-3039, PSR J1738+0333)
● Includes observational uncertainties (masses, spins, eccentricity, EOS)

Constraints on Lorentz violation in gravity
(Yagi, Blas, Yunes, EB 2013; Yagi, Blas, EB, Yunes 2013)

18/28



Gravitational physics seminar 
University of Cardiff, April 11, 2014 

Are BHs possible in LV gravity?

● BHs in GR defined in terms of spacetime causal structure 

eg in static spherical spacetime, horizon lies where light 
cones “tilt inwards” (cf Eddington Finkelstein coordinates).

● In GR, matter (photons) and gravitons have same speed c
● In LV gravity, photon, spin-2, spin-1 and spin-0 gravitons 

have different propagation speeds                              
different propagation cones                 multiple horizons

● If higher-order terms included in the action, non-linear 
dispersion relations for gravitons                                           
infinite speed in the UV limit               do BHs exist at all?

ω2=k 2+α k 4+...
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Spherical BHs in infrared LV gravity 
(EB, Jacobson & Sotiriou 2011)

● Once fixed mass, one-parameter family of solutions characterized by 
aether charge A

2

● For A
2
≠ A

2
reg  naked curvature singularity at spin-0 horizon, but 

gravitational collapse picks regular solution A
2
≠ A

2
reg (Garfinkle, 

Eling & Jacobson 2007)

● Impose regularity at spin-0 horizon by solving field eqs perturbatively, 

and pick asymptotically flat solution by shooting method (asymptotic 
flatness does not follow from field eqs, unlike in GR)

● UV corrections due to higher curvature terms small away from central 
singularity
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BH exterior structure

● Because of Cherenkov bound, spin-0 horizon is inside matter 
horizon (“metric horizon”)

● Outside metric horizons, BHs similar to Schwarzschild

AE Horava

Δ(ΩISCO r g)
ΩISCO r g

f (r )=1−
r g
r

+...
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BH exterior structure

Δ(b ph /r g)
b ph /r g

=
Δ(Ω ph rg)

Ω r g

AE Horava

 Measurable with GWs?
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BH interior structure

Metric qualitatively similar to Schwarzschild (curvature 
singularity at r=0), aether oscillates

      is aether's Lorentz factor relative
to observer orthogonal to (spacelike) hypersurface r = const
γ r
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BH interior structure
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Implications for causal structure in BH interior
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aether orthogonal to (spacelike) hypersurface r = r
u
 = constθr=0

Any signal r < r
u
 can only propagate inwards, whatever its speed, 

because future=inwards           r = r
u
 is a Universal Horizon 

(EB, Jacobson & Sotiriou 2011; Blas and Sibiryakov 2011)
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A universal horizon for signals of infinite speed
(EB, Jacobson & Sotiriou 2011; Blas and Sibiryakov 2011)
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Figure adapted from 
Cropp, Liberati and Mohd,
arXiv:1312.0405
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Figure adapted from 
Cropp, Liberati and Mohd,
arXiv:1312.0405
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Figure adapted from 
Cropp, Liberati and Mohd,
arXiv:1312.0405
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Figure adapted from 
Cropp, Liberati and Mohd,
arXiv:1312.0405

26/28

A universal horizon for signals of infinite speed
(EB, Jacobson & Sotiriou 2011; Blas and Sibiryakov 2011)



Gravitational physics seminar 
University of Cardiff, April 11, 2014 

Figure adapted from 
Cropp, Liberati and Mohd,
arXiv:1312.0405
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Figure adapted from 
Cropp, Liberati and Mohd,
arXiv:1312.0405
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Further developments about Universal Horizons

● Universal horizon seems to exists also in slowly rotating BHs (at 
least in Horava gravity, Barausse and Sotiriou 2013) and is robust 
to UV corrections to the action

● Universal horizons satisfy first law of BH thermodynamics 
(Berglund, Bhattacharyya, Mattingly 2012, 2013; Mohd 2013), and 
evidence that Hawking radiation is associated to it (Cropp, Liberati 
and Mohd 2013)

● Confirmation that universal horizons form in gravitational collapse 
(Saravani, Afshordi, Mann 2013)

● Universal horizon linearly stable, but clues of non-linear instability 
(Blas and Sibiryakov 2011) 
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Conclusions

● Lorentz violations in gravity generically introduces violations 
of strong equivalence principle and thus dipole emission

● Placing precise constraints with binary pulsars requires exact 
values of sensitivities (non-trivial calculation)

● Resulting constraints are strong-field and ~ order of 
magnitude stronger than previous ones

● BH solutions very similar to GR in the “exterior”, but causal 
structure is very different in the “interior” (universal horizon 
acts as boundary for perturbations with infinite speed)
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