

Black holes as observatories for beyond-standard model physics

Helvi Witek

DAMTP University of Cambridge

H. Okawa, HW, V. Cardoso, 1401.1548

Gravitational Physics Seminar - Cardiff University, 25 April 2014

study fundamental fields

- dark matter candidates
- axions from string theory compactifications
- modified gravity, e.g., scalar tensor theories using precision black hole physics

Outline

1) Introduction

- Superradiance and the "black-hole bomb"
- Massive scalar fields in BH background

2 Lighthouses in the sky – scalar clouds around black holes

3 Summary and Outlook

Superradiance

consider scattering of wave $\Phi \sim \exp(-\iota \omega t)$ off a Kerr BH with (M, a/M)

 negative energy and angular momentum flux into horizon for

$$0 \le \omega_R < m\Omega_H = m \frac{a}{2Mr_+}$$

- decrease of the BH's mass and spin
- amplification of field's amplitude

- $\Rightarrow "superradiant scattering" or "superradiance" (Zel'dovich '71; Misner '72; Press & Teukolsky '72-'74)$ $\Rightarrow mechanism to extract energy and angular momentum from BH$
 - amplification factors for nearly extremal BHs and (Press & Teukolsky '72-'74)
 - spin-0 field: \sim 0.04%
 - spin-1 field: \sim 4%
 - spin-2 field: $\sim 138\%$

Superradiant instability

"Black hole bomb" mechanism (Zel'dovich '71, Press & Teukolsky '72, Cardoso et al '04, ...)

- superradiant scattering of wave
 - \Rightarrow net amplification in one reflection and scattering
- confine system inside perfectly reflecting cavity
 - \Rightarrow exponentially growing modes
 - \Rightarrow "superradiant instability" or "Black hole bomb" (Press & Teukolsky '72)

credit: A. Sousa

Superradiant instability

natural "mirror"

- asymptotically AdS: timelike boundary (Hawking & Reall '00, Cardoso & Dias '04, Cardoso et al '13, ...)
- massive fields with $m_B = \mu \hbar$; "mirror" if $\omega_R \lesssim \mu$

(Damour et al. '76, Detweiler '80, Zouros & Eardley '79, ...)

Massive scalar fields - what do we know?

Klein-Gordon equation (in Kerr background)

$$(\Box - \mu^2)\Phi = 0$$
, with $\Phi = \exp(-\iota\omega t)\exp(\iota m\phi)S_{lm}(\theta)R_{lm}(r)$

- solutions:
 - quasi-normal modes (radiative bcs)
 - quasi-bound states
 ("trapped" in potential well)
- decaying modes for ω_I < 0; growing modes for ω_I > 0

Witek et al '12

• for small couplings $M\mu\lesssim 0.1$: hydrogen-like spectrum (Detweiler '80, Dolan '07, Pani et al '12)

$$\omega_R \sim \mu \left[1 - \left(\frac{M\mu}{2(n+l+S+1)} \right)^2 \right]$$

 \Rightarrow "gravitational atom"

Massive scalar fields - frequency domain

instability is regulated by BH spin and mass coupling

$$\frac{r_{+}}{\lambda_{C}} \sim \frac{G}{c\hbar} M\mu = 7.45 \cdot 10^{9} \left(\frac{M}{M_{\odot}}\right) \left(\frac{m_{B}}{(eV/c^{2})}\right)$$

 \Rightarrow most effective for $M\mu \sim \mathcal{O}(1)$ and high spins

maximum instability growth rate for bound states (Dolan '07, Cardoso & Yoshida '05)

I = m = 1, a/M = 0.99, $M\mu = 0.42$: $\tau = 1/\omega_I \sim 10^7 \, GM/c^3 \sim 50 \, (M/M_\odot) \, {
m s}$

Massive scalar fields – time domain

- formulation of KG equation as time evolution problem (Witek et al '12, Dolan '12)
- initial data with $Y \sim Y_{1-1} Y_{11}$, $M\mu = 0.42$, a/M = 0.99

• beating between overtone modes $\omega_{R,1} = \omega_{R,0} + \delta_{10}, \ \delta_{10} \ll 1$

$$\psi \sim (A_0 - A_1) \sin(\omega_{R,0}t) + A_1 \sin(\omega_{R,0}t) \cos(\delta_{10}/2t)$$

generic feature in BH backgrounds

(Dolan '12; Witek et al '12; Degollado & Herdeiro '13)

Superradiant instability in physical systems

 \bullet for astrophysical BHs (3 $M_\odot \lesssim M \lesssim 10^9 M_\odot$) and SM particles: $M\mu \sim 10^{18}$

 $au \sim 10^7 \exp(1.84 M \mu) \left(rac{GM}{c^3}
ight)$ (Zouros & Eardley '79)

- \Rightarrow irrelevant???
- candidates:
 - QCD axion with $m_B \sim 10^{-10} eV \left(rac{10^{16} {
 m GeV}}{f_a}
 ight)$ (Peccei & Quinn '77)
 - ultra-light bosons emerging in string theory compactification
 ⇒ "string axiverse" plethora of ultra-light axion-like particles

(Arvanitaki & Dubovsky '10, '11, Kodama & Yoshino '11)

- \Rightarrow bosonic clouds around BHs if $10^{-21} eV \leq m_B \leq 10^{-8} eV$
- fundamental fields, e.g., in extensions of GR with axionic or dilaton coupling

Signatures of the superradiant instability

- formation of bound states around BHs \Rightarrow "gravitational atom"
- scalar and modified gravitational wave emission

Pani et al '12

estimates for BH spin and mass from electromagnetic observations

(McClintock & Remillard '09, Reynolds '13, Ferrarese et al '04, Denney et al '10, Brennemann et al '11,...)

 \Rightarrow study beyond-SM physics by precision BH physics .

What has been done?

- massive scalar fields around BHs (Damour et al '76; Zouros & Eardley '79; Detweiler '80; Furuhashi '04; Cardoso & Yoshida '05; Dolan '107; Berti et al '09; Konoplya et al '06; Pani et al '12; Hod '12; Barranco et al '13; Strafuss & Khanna '05; Kodama & Yoshino '12; Barranco et al '12, '13; Dolan '12; Witek et al '12; ...)
- Proca fields around BHs (Rosa & Dolan '11; Pani et al '12; Witek et al '12)
- massive gravity: $M\omega_I\sim {\cal O}(1)$, monopole & superradiant instability (Brito et al '13, Babichev & Fabbri '13)
- BHs surrounded by matter in scalar-tensor theories
 ⇒ scalar fields gain effective mass (Cardoso et al '13)
- charged scalar in Reissner-Nordström backgrounds
 (Degollado & Herdeiro '13; Degollado, Herdeiro & Rúnarsson '13; Hod '13, Degollado & Herdeiro '13)
- non-linear self-interaction \Rightarrow "bosenova"-like particle bursts (Yoshino & Kodama '12, '13)
- non-linear evolutions of the massive scalar field BH system (Okawa et al '14)
- non-linear studies of superradiance for gravitational waves (East et al '13)

Scalar clouds around black holes – non-linear evolutions

(H. Okawa, HW, V. Cardoso, 1401.1548)

- in dynamical regime final state?
- formation of "gravitational atom"?
- "gravitational wave pulsars"?

 \Rightarrow include backreaction onto spacetime

What is the fate of the system?

• consider full, non-linear GR – Klein-Gordon system in D = 4

- strategy: non-linear time evolutions in 3 + 1 using NumRel techniques
- two independent codes: ${
 m COSMOS}$ and ${
 m LEAN-SR}$ (based on ${
 m CACTUS}$ / ${
 m CARPET}$ and Sperhake '06)

Cosmos cluster @ DAMTP/CMS

• solve constraints \rightarrow initial data:

- analytic ID for
 Schwarzschild + Gaussian scalar
- numerical ID for

Kerr + Gaussian or bound state scalar

- evolution equations:
 - BSSN formulation + puncture gauge
- wave extraction:
 - Newman-Penrose formalism for GWs

Scalar clouds around BHs – Setup

- ¹ Schwarzschild BH and scalar field with $\mu = 0.42$ initialize scalar field as Gaussian wave packet $\Pi_0 \sim \exp\left(-\frac{(r-r_0)^2}{w^2}\right) \sum_{lm} Y_{lm}(\theta, \varphi)$
- ² Kerr BH with $a_0/M_0 = 0.95$ and scalar field with $\mu = 0.30$ initialize scalar field as Gaussian or pseudo-bound state

Evolution of a scalar field with $\mu = 0.42$, $r_0 = 12M_0$, $w = 0.5M_0$, $Y = Y_{1-1} - Y_{11}$ around Schwarzschild

Scalar cloud around Schwarzschild – Results

scalar field with $r_0 = 12M_0$, $w = 0.5M_0$, $Y = Y_{1-1} - Y_{11}$, $\mu = 0.42$

spin a/M

- increase in BH mass
- $\mu = 0.0: \Delta M/M_0 = 18.3\%$
- $\mu = 0.42$: $\Delta M/M_0 = 20.9\%$ (after $t \sim 2000M$)

- $\mu = 0.0: a/M \sim 0.01$ $\mu = 0.42: a/M \sim 0.025$
- settles down to Kerr BH with larger mass and small spin

Scalar cloud around Schwarzschild – Results

scalar field Φ_{11}

gravitational wave $\Psi_{4,22}$

- beating between overtone modes
- space dependent excitation of modes
- qualitative agreement with linear evolutions (Dolan '12, Witek et al '12)

- quasi-normal ringdown $M\omega_{22} = 0.371 \imath 0.084$
- long-lived GW emission $M\omega_{R,22}^{\Psi_4} \sim 0.823 \sim 2M\omega_{R,11}^{\Phi}$ $\Rightarrow f \sim 35 kHz (M/M_{\odot})^{-1}$
- beating pattern, induced by scalar field

Scalar cloud around Schwarzschild – Results

- excitation of higher multipoles
- remember: initial data is Gaussian scalar $\sim Y_{11} Y_{1-1}$ around Schwarzschild

scalar field Φ_{lm}

possible explanations:

- non-linear effects?
- shift to shorter length scales
 ⇒ indication for gravitational
 turbulence? (Okawa et al '13, Yang et al '14)
- remember: gravitational turbulence found in AdS spacetimes

(Bizon & Rostworowski '11, Maliborski '12, Buchel et al '13,

Adams et al '13)

 \Rightarrow more work needed!

Scalar clouds around Kerr – Results

Evolution of a pseudo-bound state scalar field with $\mu = 0.35$, $r_0 = 12M_0$, $w = 2M_0$ around Kerr with $a_0/M_0 = 0.95$

Scalar cloud around Kerr – Results

emission of scalar and gravitational waves

scalar field Φ_{11}

- Iong-lived bound states
- beating effect
- frame-dragging effects
- before interaction: $\omega_R \sim 0.352 < m\Omega_H$ after interaction: $\omega_R \sim 0.341 > m\Omega_H$

gravitational wave Ψ_4

- excitation of ringdown signal
- long-lived gravitational wave emission with $M\omega_{R,22} \sim 0.65$ $\Rightarrow f \sim 20 kHz (M/M_{\odot})^{-1}$

Scalar cloud around Kerr – Results

response of black hole long time behaviour:

- overall increase in mass $\Delta M/M_0 \sim 0.6\%$
- decrease in spin to $a/M \sim 0.917$
- here: accretion dominant
 ⇒ shift in Regge plane towards larger mass and smaller spin

- small initial spin: increase in mass, decrease in spin ⇒ accretion
- high initial spin: simultaneous decrease in mass and spin
 ⇒ hint for superradiant response
- compatible with induced gravitational superradiance

Summary

- superradiance mechanism to extract BH energy and angular momentum
- here: "BH bomb" mechanism triggered by ultra-light massive fields
- observation of astrophysical BHs
 - \Rightarrow constraints on allowed field mass
- first full non-linear investigations of massive scalars surrounding BHs
 - Schwarzschild
 - at late time: Kerr BH with larger mass and small spin
 - formation of scalar cloud and long-lived gravitational radiation
 - Kerr
 - hint for superradiance effect
 - at late times: Kerr BH with larger mass and smaller spin
 - long-lived quasi-bound states and gravitational wave emission
 - frame-dragging effects
 - long-lived scalar and gravitational radiation with $f \sim \mathcal{O}(10) k Hz (M/M_{\odot})^{-1}$
 - \Rightarrow potentially observable with advLIGO or eLISA

What comes next?

- for scalars: too long time-scales $(au/M \sim 10^7)$ for definite statements
- higher amplification factor for spin-1 / spin-2 fields
 ⇒ extension to different fields, space dependent mass coupling, ...
- framework adaptable to multiple scalars and / or BH binaries
- modification in presence of accretion discs? suppression of instable modes?
- understanding of gravitational turbulence in asymptotically flat spacetimes

Thank you!

animations available @ http://blackholes.ist.utl.pt