Analytical and numerical modeling of precessing binary black holes

Harald Pfeiffer Canadian Institute for Theoretical Astrophysics

Physics Seminar, Cardiff University, July 2, 2014

$$
m_1 \longrightarrow \bullet
$$
\n
$$
H = \frac{1}{2} m_1 \dot{\mathbf{x}}_1^2 + \frac{1}{2} m_2 \dot{\mathbf{x}}_2^2 - \frac{m_1 m_2}{|\mathbf{x}_1 - \mathbf{x}_2|}
$$

Harald Pfeiffer Cardiff University July 2, 2014

$$
m_1 \longrightarrow \bullet
$$
\n
$$
H = \frac{1}{2} m_1 \dot{\mathbf{x}}_1^2 + \frac{1}{2} m_2 \dot{\mathbf{x}}_2^2 - \frac{m_1 m_2}{|\mathbf{x}_1 - \mathbf{x}_2|}
$$

$$
H = \frac{1}{2} \frac{m_1 m_2}{M} (\dot{\mathbf{x}}_1 - \dot{\mathbf{x}}_2)^2 + \frac{m_1 m_2}{|\mathbf{x}_1 - \mathbf{x}_2|} + \frac{1}{2} M \left(\frac{m_1}{M} \dot{\mathbf{x}}_1 + \frac{m_2}{M} \dot{\mathbf{x}}_2 \right)^2
$$

Harald Pfeiffer Cardiff University July 2, 2014

$$
m_1 \longrightarrow \bullet
$$
\n
$$
H = \frac{1}{2} m_1 \dot{\mathbf{x}}_1^2 + \frac{1}{2} m_2 \dot{\mathbf{x}}_2^2 - \frac{m_1 m_2}{|\mathbf{x}_1 - \mathbf{x}_2|}
$$

$$
H = \frac{1}{2} \frac{m_1 m_2}{M} (\dot{\mathbf{x}}_1 - \dot{\mathbf{x}}_2)^2 + \frac{m_1 m_2}{|\mathbf{x}_1 - \mathbf{x}_2|} + \frac{1}{2} M \left(\frac{m_1}{M} \dot{\mathbf{x}}_1 + \frac{m_2}{M} \dot{\mathbf{x}}_2 \right)^2
$$

Center of mass

Harald Pfeiffer Cardiff University July 2, 2014

$$
m_1 \longrightarrow \bullet
$$
\n
$$
H = \frac{1}{2} m_1 \dot{\mathbf{x}}_1^2 + \frac{1}{2} m_2 \dot{\mathbf{x}}_2^2 - \frac{m_1 m_2}{|\mathbf{x}_1 - \mathbf{x}_2|}
$$

 $\mathbf{r} = \mathbf{x}_1 - \mathbf{x}_2$ moves in central potential

$$
H = \frac{1}{2} \frac{m_1 m_2}{M} (\dot{\mathbf{x}}_1 - \dot{\mathbf{x}}_2)^2 + \frac{m_1 m_2}{|\mathbf{x}_1 - \mathbf{x}_2|} + \frac{1}{2} M \left(\frac{m_1}{M} \dot{\mathbf{x}}_1 + \frac{m_2}{M} \dot{\mathbf{x}}_2 \right)^2
$$

Center of mass

Harald Pfeiffer Cardiff University July 2, 2014

$$
H = \frac{1}{2}m_1\dot{\mathbf{x}}_1^2 + \frac{1}{2}m_2\dot{\mathbf{x}}_2^2 - \frac{m_1m_2}{|\mathbf{x}_1 - \mathbf{x}_2|}
$$

$$
\mathbf{r} = \mathbf{x}_1 - \mathbf{x}_2 \text{ moves in central potential}
$$

$$
H = \frac{1}{2} \frac{m_1 m_2}{M} (\dot{\mathbf{x}}_1 - \dot{\mathbf{x}}_2)^2 + \frac{m_1 m_2}{|\mathbf{x}_1 - \mathbf{x}_2|} + \frac{1}{2} M \left(\frac{m_1}{M} \dot{\mathbf{x}}_1 + \frac{m_2}{M} \dot{\mathbf{x}}_2 \right)^2
$$

$$
\mathbf{r}(\phi) = \frac{p}{1 + \varepsilon \cos \phi}
$$

$$
\left(\begin{array}{c}\n\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot\n\end{array}\right)
$$

Center of mass

General relativistic two-body problem

- ❖ Black holes
- **❖ Event horizons**
- **❖ Black hole spin**
- ❖ Orbit precession
- ❖ Spin precession
- ❖ Periastron advance
- ❖ Gravitational waves
- ❖ Merger
- **❖ Remnant black hole kick**
- ❖ Ten 3-dim. partial differential equations

Patrick Fraser, University of Toronto

Combine analytical *and* numerical calculations to investigate BBH

General relativistic two-body problem

Patrick Fraser, University of Toronto

Combine analytical *and* numerical calculations to investigate BBH

Harald Pfeiffer Cardiff University July 2, 2014

Black Holes, Event Horizons

Harald Pfeiffer Cardiff University July 2, 2014

Black hole

- ❖ Made entirely of warped space-time
	- Curvature of space
	- Slowing of flow of time
	- Dragging of space around BH

Courtesy Kip Thorne

Black hole

- Curvature of space
- Slowing of flow of time
- Dragging of space around BH

- ❖ Curved geometry changes causal structure
	- Tipping of light-cones
	- Event horizon

Courtesy Kip Thorne

$$
A_{\rm EH} = 4\pi r_S^2
$$
, $r_S = \frac{2GM}{c^2} = 3\frac{M}{M_\odot}$ km

Harald Pfeiffer Cardiff University July 2, 2014

Light moving **away** from center of black hole

Harald Pfeiffer Cardiff University July 2, 2014

Light moving **away** from center of black hole

Harald Pfeiffer Cardiff University July 2, 2014

Light moving **away** from center of black hole

Harald Pfeiffer Cardiff University July 2, 2014

Light moving **away** from center of black hole

Harald Pfeiffer Cardiff University July 2, 2014

Light moving **away** from center of black hole

Harald Pfeiffer Cardiff University July 2, 2014

Light moving **away** from center of black hole

Harald Pfeiffer Cardiff University July 2, 2014

Event horizon for head-on colission

Harald Pfeiffer Cardiff University July 2, 2014

Space-time diagram

Ħ

Black: Event Horizon White: select light-rays which merge onto Event **Horizon**

Harald Pfeiffer Cardiff University July 2, 2014 11 11 12 12 13 14 14 14 14 15 16 17 18 17 18 17 18 17 18 17 19

Mike Cohen; and Szilagyi, Lindblom, Scheel

Harald Pfeiffer Cardiff University July 2, 2014

Apparent Horizons

❖ Surface where light *instantaneously* appears stationary

• Outgoing null-rays have zero expansion

Harald Pfeiffer Cardiff University July 2, 2014 13

Tools of the trade

❖Spectral Einstein Code

❖Post-Newtonian expansions

Harald Pfeiffer Cardiff University July 2, 2014

- ❖ Goal: Space-time metric gab satisfying $R_{ab}[g_{ab}]=0$
- ❖ Split spacetime into space *and* time
- ❖ Evolution equations

$$
\partial_t g_{ij} = \dots
$$

$$
\partial_t K_{ij} = \dots
$$

❖ Constraints

$$
R[g_{ij}] + K^2 - K_{ij}K^{ij} = 0
$$

$$
\nabla_j(K^{ij} - g^{ij}K) = 0
$$

Harald Pfeiffer Cardiff University July 2, 2014

- ❖ Goal: Space-time metric gab satisfying $R_{ab}[g_{ab}]=0$
- ❖ Split spacetime into space *and* time
- ❖ Evolution equations

$$
\frac{\partial_t g_{ij}}{\partial_t K_{ij}} = \ldots
$$

❖ Constraints

$$
R[g_{ij}] + K^2 - K_{ij}K^{ij} = 0
$$

$$
\nabla_j(K^{ij} - g^{ij}K) = 0
$$

Harald Pfeiffer Cardiff University July 2, 2014

- ❖ Goal: Space-time metric gab satisfying $R_{ab}[g_{ab}]=0$
- ❖ Split spacetime into space *and* time
- ❖ Evolution equations

$$
\partial_t g_{ij} = \dots
$$

$$
\partial_t K_{ij} = \dots
$$

❖ Constraints

$$
R[g_{ij}] + K^2 - K_{ij}K^{ij} = 0
$$

$$
\nabla_j(K^{ij} - g^{ij}K) = 0
$$

Harald Pfeiffer Cardiff University July 2, 2014

- ❖ Goal: Space-time metric gab satisfying $R_{ab}[g_{ab}]=0$
- ❖ Split spacetime into space *and* time
- ❖ Evolution equations

$$
\partial_t g_{ij} = \ldots
$$

$$
\partial_t K_{ij} = \ldots
$$

❖ Constraints

$$
R[g_{ij}] + K^2 - K_{ij}K^{ij} = 0
$$

$$
\nabla_j(K^{ij} - g^{ij}K) = 0
$$

Harald Pfeiffer Cardiff University July 2, 2014

Numerics 1: Spectral methods

❖Expand in basis-functions, solve for coefficients

$$
u(x,t) = \sum_{k=1}^{N} \tilde{u}(t)_k \Phi_k(x)
$$

❖Compute derivatives analytically

$$
u'(x,t) = \sum_{k=1}^{N} \tilde{u}(t)_k \Phi'_k(x)
$$

❖Compute nonlinearities in physical space

Spectral

More widely used: Finite differences

Harald Pfeiffer Cardiff University July 2, 2014

Numerics II: Black Hole Excision

Artificial boundary inside horizon time Singularity **Singularity** space

Harald Pfeiffer Cardiff University July 2, 2014

Spectral Einstein Code *SpEC (*Caltech-Cornell-CITA) <http://www.black-holes.org/SpEC.html>

Harald Pfeiffer Cardiff University July 2, 2014

Spectral Einstein Code *SpEC (*Caltech-Cornell-CITA) <http://www.black-holes.org/SpEC.html>

Harald Pfeiffer Cardiff University July 2, 2014

Spectral Einstein Code *SpEC (*Caltech-Cornell-CITA) <http://www.black-holes.org/SpEC.html>

Harald Pfeiffer Cardiff University July 2, 2014

Spectral Einstein Code *SpEC (*Caltech-Cornell-CITA) <http://www.black-holes.org/SpEC.html>

Harald Pfeiffer Cardiff University July 2, 2014

IV: Merger & Ringdown

❖ *Mark Scheel, Bela Szilagyi*

Szilagyi, Lindblom, Scheel 08, Hemberger ea, 13

❖ Close to merger

- Switch domain-decomposition
- Active gauge conditions
- Adaptive Mesh Refinement

❖ After common horizon

• Switch to distorted concentric shells

V. Recent improvements

- ❖ Szilagyi: Adaptive Mesh Refinement
- ❖ Blackman & Szilagyi: Spectral Cauchy Characteristic Evolution
- ❖ Lovelace et al: Very high spin simulations • $S/M^2 = 0.97, 0.98,$ and going
- **❖ Ossokine, HP et al: Precessing binaries**
- ❖ Ossokine, HP et al: More robust initial data
	- higher spins, higher mass-ratio, lower eccentricity, less CPU time

Post-Newtonian Theory

Numerous workers over many decades

- \cdot Expand Einstein's equations in powers of $(v/c)^2$
	- Newtonian like equations of motion

0-PN (Newtonian)

 $a_1^i=-\frac{G m_2 n_{12}^i}{r_{12}^2}$

Harald Pfeiffer Cardiff University July 2, 2014

Post-Newtonian Theory

- \cdot Expand Einstein's equations in powers of $(v/c)^2$
	- Newtonian like equations of motion

$$
a_{1}^{i} = -\frac{Gm_{2}n_{12}^{i}}{r_{12}^{2}} + \frac{1}{r_{12}^{2}} \left\{ \left[\frac{5G^{2}m_{1}m_{2}}{r_{12}^{2}} + \frac{4G^{2}m_{2}^{2}}{r_{12}^{2}} + \frac{Gm_{2}}{r_{12}^{2}} \left(\frac{3}{2}(n_{12}v_{2})^{2} - v_{1}^{2} + 4(v_{1}v_{2}) - 2v_{2}^{2} \right) \right] n_{12}^{i}
$$
\n
$$
+ \frac{Gm_{2}}{r_{12}^{2}} \left(4(n_{12}v_{1}) - 3(n_{12}v_{2}) \right) v_{12}^{i}
$$
\n
$$
+ \frac{1}{c^{4}} \left\{ \left[-\frac{5TG^{3}m_{1}^{2}m_{2}}{4r_{12}^{4}} - \frac{69G^{3}m_{1}m_{2}^{2}}{2r_{12}^{4}} - \frac{9G^{3}m_{2}^{3}}{r_{12}^{4}} \right.\right.
$$
\n
$$
+ \frac{Gm_{2}}{r_{12}^{2}} \left(-\frac{15}{8}(n_{12}v_{2})^{4} + \frac{3}{2}(n_{12}v_{2})^{2}v_{1}^{2} - 6(n_{12}v_{2})^{2}(v_{1}v_{2}) - 2(v_{1}v_{2})^{2} + \frac{9}{2}(n_{12}v_{2})^{2}v_{2}^{2} + 4(v_{1}v_{2})v_{2}^{2} - 2v_{2}^{4} \right)
$$
\n
$$
+ \frac{G^{2}m_{1}m_{2}}{r_{12}^{3}} \left(\frac{39}{2}(n_{12}v_{1})^{2} - 39(n_{12}v_{1})(n_{12}v_{2}) + \frac{17}{2}(n_{12}v_{2})^{2} - \frac{15}{4}v_{1}^{2} - \frac{5}{2}(v_{1}v_{2}) + \frac{5}{4}v_{2}^{2} \right)
$$
\n
$$
+ \frac{G^{2}m_{1}^{2}}{r_{12}^{3}} \left(2(n_{12}v_{1})^{2} - 4(n_{12}v_{1})(n_{12}
$$

Harald Pfeiffer Cardiff University July 2, 2014

❖ Expand Einstein's equations in powers of $(v/c)^2$

• Newtonian like equations of motion: $+\frac{1}{c^5}\left\{\left[\frac{208G^3m_1m_2^2}{15r_{12}^4}(n_{12}v_{12})-\frac{24G^3m_1^2m_2}{5r_{12}^4}(n_{12}v_{12})+\frac{12G^2m_1m_2}{5r_{12}^3}(n_{12}v_{12})v_{12}^2\right]n_{12}^4\right\}$ $+\left[\frac{8G^{3}m_{1}^{2}m_{2}}{5r_{12}^{4}}-\frac{32G^{3}m_{1}m_{2}^{2}}{5r_{12}^{4}}-\frac{4G^{2}m_{1}m_{2}}{5r_{12}^{3}}v_{12}^{2}\right]v_{12}^{i}\Bigg\}$ $+\frac{1}{c^6}\Bigg\{\Bigg[\frac{Gm_2}{r_{12}^2}\bigg(\frac{35}{16}(n_{12}v_2)^6-\frac{15}{8}(n_{12}v_2)^4v_1^2+\frac{15}{2}(n_{12}v_2)^4(v_1v_2)+3(n_{12}v_2)^2(v_1v_2)^2\Bigg]$ $-\frac{15}{2}(n_{12}v_2)^4v_2^2+\frac{3}{2}(n_{12}v_2)^2v_1^2v_2^2-12(n_{12}v_2)^2(v_1v_2)v_2^2-2(v_1v_2)^2v_2^2$ $+\frac{15}{2}(n_{12}v_2)^2v_2^4+4(v_1v_2)v_2^4-2v_2^6$ $+\frac{G^{2}m_{1}m_{2}}{r_{12}^{3}}\left(-\frac{171}{8}(n_{12}v_{1})^{4}+\frac{171}{2}(n_{12}v_{1})^{3}(n_{12}v_{2})-\frac{723}{4}(n_{12}v_{1})^{2}(n_{12}v_{2})^{2}\right.$ $+\frac{383}{2}(n_{12}v_1)(n_{12}v_2)^3-\frac{455}{8}(n_{12}v_2)^4+\frac{229}{4}(n_{12}v_1)^2v_1^2$ $-\frac{205}{2}(n_{12}v_1)(n_{12}v_2)v_1^2+\frac{191}{4}(n_{12}v_2)^2v_1^2-\frac{91}{8}v_1^4-\frac{229}{2}(n_{12}v_1)^2(v_1v_2)$ + 244(n₁₂v₁)(n₁₂v₂)(v₁v₂) - $\frac{225}{2}(n_{12}v_2)^2(v_1v_2) + \frac{91}{2}v_1^2(v_1v_2)$ $-\frac{177}{4}(v_1v_2)^2+\frac{229}{4}(n_{12}v_1)^2v_2^2-\frac{283}{2}(n_{12}v_1)(n_{12}v_2)v_2^2$ $+\frac{259}{4}(n_{12}v_2)^2v_2^2-\frac{91}{4}v_1^2v_2^2+43(v_1v_2)v_2^2-\frac{81}{8}v_2^4$ $+\frac{G^2m_2^2}{r_{12}^3}\biggl(-6(n_{12}v_1)^2(n_{12}v_2)^2+12(n_{12}v_1)(n_{12}v_2)^3+6(n_{12}v_2)^4$ +4(n₁₂v₁)(n₁₂v₂)(v₁v₂) + 12(n₁₂v₂)²(v₁v₂) + 4(v₁v₂)² $-4(n_{12}v_1)(n_{12}v_2)v_2^2-12(n_{12}v_2)^2v_2^2-8(v_1v_2)v_2^2+4v_2^4\Big)$ $+\frac{G^3m_2^3}{r_{12}^4}\left(-({n_{12}v_1})^2+2({n_{12}v_1})({n_{12}v_2})+\frac{43}{2}({n_{12}v_2})^2+18(v_1v_2)-9v_2^2\right)$ $+\frac{G^3m_1m_2^2}{r_{12}^4}\bigg(\frac{415}{8}(n_{12}v_1)^2-\frac{375}{4}(n_{12}v_1)(n_{12}v_2)+\frac{1113}{8}(n_{12}v_2)^2-\frac{615}{64}(n_{12}v_{12})^2\pi^2$ + $18v_1^2 + \frac{123}{64}\pi^2v_{12}^2 + 33(v_1v_2) - \frac{33}{2}v_2^2$

2.5-PN and 3-PN

$$
+\frac{G^3m_1^2m_2}{r_{12}^4}\left(-\frac{45887}{168}(n_{12}v_1)^2+\frac{24025}{42}(n_{12}v_1)(n_{12}v_2)-\frac{10469}{42}(n_{12}v_2)^2+\frac{48197}{840}v_1^2\right.-\frac{36227}{420}(v_1v_2)+\frac{36227}{840}v_2^2+110(n_{12}v_{12})^2\ln\left(\frac{r_{12}}{r_1^2}\right)-22v_{12}^2\ln\left(\frac{r_{12}}{r_1^2}\right)\right)+\frac{16G^4m_2^4}{r_{12}^5}+\frac{G^4m_1^2m_2^2}{r_{12}^5}\left(175-\frac{41}{16}\pi^2\right)+\frac{G^4m_1^3m_2}{r_{12}^5}\left(-\frac{3187}{1260}+\frac{44}{3}\ln\left(\frac{r_{12}}{r_1^2}\right)\right)+\frac{G^4m_1m_2^3}{r_{12}^5}\left(\frac{110741}{630}-\frac{41}{16}\pi^2-\frac{44}{3}\ln\left(\frac{r_{12}}{r_2^2}\right)\right)\Big)n_{12}^4
$$

+\left[\frac{Gm_2}{r_{12}^2}\left(\frac{15}{2}(n_{12}v_1)(n_{12}v_2)^4-\frac{45}{8}(n_{12}v_2)^5-\frac{3}{2}(n_{12}v_2)^3v_1^2+6(n_{12}v_1)(n_{12}v_2)^2(v_1v_2)\right]-6(n_{12}v_2)^3(v_1v_2)-2(n_{12}v_2)(v_1v_2)^2-\frac{12}{12}(n_{12}v_1)(n_{12}v_2)^2v_2^2+12(n_{12}v_2)^3v_2^2\right)+((n_{12}v_2)v_1^2v_2^2-4(n_{12}v_1)(v_1v_2)v_2^2)-7(n_{12}v_2)v_2^2\right)+4\frac{G^2m_2^2}{r_{12}^3}\left(-2(n_{12}v_1

Harald Pfeiffer Cardiff University July 2, 2014

Post-Newtonian Theory

❖ Newtonian-like equations known to (v/c)^7

• GW emission appears at (v/c)^5; fractional accuracy "only" (v/c)^2

❖ For *circular orbits*, one can compute directly GW energy flux

$$
\mathcal{L} = \frac{32c^5}{5G} \nu^2 x^5 \left\{ 1 + \left(-\frac{1247}{336} - \frac{35}{12} \nu \right) x + 4\pi x^{3/2} + \left(-\frac{44711}{9072} + \frac{9271}{504} \nu + \frac{65}{18} \nu^2 \right) x^2 \right\}
$$

+
$$
\left(-\frac{8191}{672} - \frac{583}{24} \nu \right) \pi x^{5/2}
$$

+
$$
\left[\frac{6643739519}{69854400} + \frac{16}{3} \pi^2 - \frac{1712}{105} C - \frac{856}{105} \ln(16 x) + \left(-\frac{134543}{7776} + \frac{41}{48} \pi^2 \right) \nu - \frac{94403}{3024} \nu^2 - \frac{775}{324} \nu^3 \right] x^3
$$

+
$$
\left(-\frac{16285}{504} + \frac{214745}{1728} \nu + \frac{193385}{3024} \nu^2 \right) \pi x^{7/2} + \mathcal{O} \left(\frac{1}{c^8} \right) \right\}.
$$

- Inspiral-rate w/ fractional accuracy $(v/c)^{2}$
- Spin contributions work in progress, as are the $(v/c)^{8}$ terms

Periastron advance

A.H. Mroue, HP, L.E. Kidder, S.A.Teukolsky 2009

A. Le Tiec, A.H. Mroue, L. Barack, A. Buonanno, HP, N. Sago, A. Taracchini, 2011

A. Le Tiec + UMD + SXS, 1309.0541

T. Hinderer + UMD + SXS, 1309.0544

Periastron advance

∆φ=2^π(K-1)

K=1.28

Equal mass BBH

Mroue, et al 2009, Le Tiec et al 2011

Harald Pfeiffer Cardiff University July 2, 2014

Periastron advance

Equal mass BBH Mass-ratio q=1/8 1.6 $q=1, e-0.05$ 1.7 **Test Mass** $q=1, 3PN$ $q=1, e-5x10^{-5}$ Test-mass $q=2$, $e=3x10^{-5}$ 1.5 O $q=1, 3PN$ 1.6 $q=3$, $e=2x10^{-5}$ $q=4$, $e=3x10^{-5}$ $\Omega_\Phi/\Omega_{_{\rm r}}$ □ 1.4 $\Omega_{\Phi}^{}$ $q=6, e=8x10^{-5}$ 1.5 \blacksquare 1.3 1.4 1.2 1.3 0.015 0.02 0.025 0.015 0.02 0.03 0.025 0.03 0.035 0.04 $0.\overline{0}1$ $M \Omega_{\Phi}$ $M \Omega_{\Phi}$

Mroue, et al 2009, Le Tiec et al 2011

Comparison w/ analytical calc's

Comparison w/ analytical calc's

Comparison w/ analytical calc's

Wednesday, July 2, 14

Periastron Advance for Spinning Primary

- **E** No results for self-force calculations on Kerr background
- ❖ Can we *measure* the self-force term *from simulations*?

❖ Available information:

Le Tiec ea 1309.0541

- Kerr geodesics
- post-Newtonian expansions
- Combine and incorporate symmetry under exchange of BH labels:

$$
W_{\rm SB} = 1 - 6x + \left[(4 + 4\Delta - 2v) \chi_1 + (4 - 4\Delta - 2v) \chi_2 \right] x^{3/2} + \left[\left(-\frac{3}{2} - \frac{3}{2}\Delta + 3v \right) \chi_1^2 - 6v \chi_1 \chi_2 + \left(-\frac{3}{2} + \frac{3}{2}\Delta + 3v \right) \chi_2^2 \right] x^2
$$

-
$$
\left[\left(2 + 2\Delta + \frac{45}{2}v + \frac{17}{2}\Delta v \right) \chi_1 + \left(2 - 2\Delta + \frac{45}{2}v - \frac{17}{2}\Delta v \right) \chi_2 \right] x^{5/2} + \left[\left(4 + 4\Delta + \frac{15}{2}v + \frac{31}{2}\Delta v - 11v^2 \right) \chi_1^2
$$

+
$$
(36 + 22v) v \chi_1 \chi_2 + \left(4 - 4\Delta + \frac{15}{2}v - \frac{31}{2}\Delta v - 11v^2 \right) \chi_2^2 \right] x^3 + \mathcal{O}(x^{7/2}). \tag{34}
$$

Measuring self-force for spinning BBH

❖ The full periastron advance is

$$
W=W_{\rm SB}+\sum_{n=1}^{\infty}v^n W_n,
$$

❖ Consider difference $\delta W \equiv W_{\rm NR} - W_{\rm SB} = W_1 \nu + \mathcal{O}(\nu^2)$

Measuring self-force for spinning BBH

❖ The gravitational self-force contribution is the entire term proportional to the mass-ratio $q = m_{\text{small}}/m_{\text{big}} \leq 1$

$$
W = W_{\text{Kerr}}(x; \chi) + \bar{q} W_{\text{GSF}}(x; \chi) + \mathcal{O}(\bar{q}^2)
$$

$$
W_{\text{GSF}} = W_1 - 10\chi v^3 + 6\chi^2 v^4 - 27\chi v^5
$$

+ 25\chi^2 v^6 + (\gamma - 4) \chi^3 v^7.

$$
W_1^{\text{fit}} = 14x^2 \frac{1+c_1x}{1+c_2x+c_3x^2},
$$

❖ Have computed self-force result from NR simulations at mass-ratios 1,..., 1/8 !

Le Tiec ea 1309.0541

 $c_1^{\text{down}} = 1.1973$, $c_2^{\text{down}} = -6.88457,$ $c_3^{\text{down}} = 37.3406$.

Gravitational Waves

WWWWWWWWWWWWWWWWW NR

Harald Pfeiffer Cardiff University July 2, 2014

Precessing BH-BH

- ❖ Modulated amplitude
- ❖ Temporal harmonics
- ❖ Dependence on inclination
- ❖ Modified phasing

SXS numerical waveform catalog

A. Mroue, M.Scheel, B.Szilagyi, HP et al, 1304.6077, PRL 2013 Data publicly available www.black-holes.org/waveforms

SXS catalog: parameter space coverage

Investigate precession dynamics

❖ Numerical simulations & post-Newtonian predictions

Ossokine ea, in prep

Harald Pfeiffer Cardiff University July 2, 2014

Ossokine ea, in prep

Harald Pfeiffer Cardiff University July 2, 2014

Convergence of precessing PN

orbital plane precession *quick, monotonic convergence*

Ossokine ea, in prep

orbital phase *slow, erratic convergence*

As bad as non-precessing PN requires many-orbit NR & careful modeling

Effective-one-body models

- ❖ Buonanno, Damour 1999; many papers since
- ❖ Effective Hamiltonian to capture conservative dynamics

$$
H = \mu \sqrt{p_r^2 + A(r) \left[1 + \frac{p_r^2}{r^2} + 2(4 - 3\nu)\nu \frac{p_r^4}{r^2}\right]}, \qquad A(r) = \sum_{k=0}^4 \frac{a_k(\nu)}{r^k} + \frac{a_5(\nu)}{r^5}
$$

• Radiation reaction terms

$$
\frac{dp_r}{dt} = -\frac{\partial H}{\partial p_r} + a_{\rm RR}^r \frac{\dot{r}}{r^2 \Omega} \widehat{{\cal F}}_{\phi}
$$

$$
\frac{dp_{\varphi}}{dt} = -0 - \frac{v_{\Omega}^3}{\nu V_{\phi}^6} F_4^4(V_{\phi}; \nu, v_{\text{pole}}), \quad \text{using 4-PN term } \mathcal{F}_{8,\nu=0} + \nu A_8
$$

•Attach BH ringdown modes

$$
\star
$$
 Fit free parameters to NR simulations

Advantages of EOB

❖ EOB Hamiltonian provides complete inspiral dynamics

- from equal masses to extreme mass-ratio
- non-adiabatic inspiral/plunge features
- BH Trajectories, Spin-evolution, waveforms

❖ Well-identified free functions, specifically A(ν)

- Can use any of these aspects to improve inspiral model
	- post-Newtonian determines low powers in velocity
	- Kerr geodesic limit determines A(v=0)
	- Self-force calculations feed into O(ν)-terms
	- Numerical relativity feeds into comparable mass-ratio contributions

❖ It works!

Disadvantages of EOB

❖ Very complicated, many "knobs":

- higher order PN terms
- non-adiabatic corrections
- waveform non-quasi-circular corrections
- Pade resummation (less emphasized recently)
- ❖ Ever evolving: Many slightly different versions
	- Continued improvements, both physically motivated and to improve agreement with NR
	- Difficult to distinguish prediction from postdiction

❖ Difficult to identify *why* EOB works well:

- Deep physical insight?
- Sheer number of data used from elsewhere (NR, PN, Self-force, ...)?

Disadvantages II: Inspiral ➔ Ringdown

- ❖ EOB-inspiral until AGW,EOB~max(AGW,NR)
- ❖ Attach BH perturbation ringdown modes with *comb-matching*

 $h_{\ell m}^{\text{insp-plunge}}(t_{\text{match}}^{\ell m} + \frac{2k-N+1}{2N-2}\Delta t_{\text{match}}^{\ell m})$ $= h_{\ell m}^{\text{merger-RD}}(t_{\text{match}}^{\ell m} + \frac{2k-N+1}{2N-2}\Delta t_{\text{match}}^{\ell m}),$ $(k = 0, 1, 2, \cdots, N - 1)$. (21)

Buonnano ea, PRD 79, 124028

Each (lm) mode matched at different time, with different comb-spacing. It all matters.

Harald Pfeiffer Cardiff University July 2, 2014

45

Disadvantages II: Inspiral ➔ Ringdown

Harald Pfeiffer Cardiff University July 2, 2014

Analytical waveform modeling

❖ Effective one body

- Buonanno, Damour 1999; many papers since
- Effective Hamiltonian to capture conservative dynamics

$$
H = \mu \sqrt{p_r^2 + A(r) \left[1 + \frac{p_r^2}{r^2} + 2(4 - 3\nu)\nu \frac{p_r^4}{r^2}\right]}, \qquad A(r) = \sum_{k=0}^4 \frac{a_k(\nu)}{r^k} + \frac{a_5(\nu)}{r^5}
$$

• Radiation reaction terms

$$
\frac{dp_r}{dt} = -\frac{\partial H}{\partial p_r} + a_{\rm RR}^r \frac{\dot{r}}{r^2 \Omega} \widehat{\mathcal{F}}_{\phi}
$$

 $\frac{dp_{\varphi}}{dt}$ = = 0 - $\frac{v_{\Omega}^3}{\nu V_{\varphi}}$ $\overline{\Omega}$ νV^6_ϕ $F_4^4(V_\phi; \nu, v_{\text{pole}})$, using 4-PN term $\mathcal{F}_{8,\nu=0} + \nu A_8$

- •Attach BH ringdown modes
- ★ Fit free parameters to NR simulations

EOB progress (1)

❖ Non-spinning case: *Error-estimate* of EOB fit

Harald Pfeiffer Cardiff University July 2, 2014

5000

6400

6000

❖ Aligned-spin case: Spin-magnitudes *up to extremal*

 0.4

 0.2

 0.0

 -0.2

 -0.4

 0.4

 0.2

 0.0

 -0.2

 -0.4

6000

 Ω

1000

6100

2000

3000

6200

 $(t-r_*)/M$

 $(t-r_*)/M$

4000

6300

 $Re(R/M h_{22})$

 $\text{Re}(NM h_{22})$

EOB progress (2)

FIG. 1. Unfaithfulness of (2,2) EOB waveforms for all the 38 nonprecessing BH binaries in the SXS catalog. Only a few selected cases are labeled in the legend.

Taracchini ea, 1311.2544

Harald Pfeiffer Cardiff University July 2, 2014

Wednesday, July 2, 14

6500

EOB progress (3)

❖ Precessing case: *First generic, precessing EOB models*

- Generic spin EOB Hamiltonian (Buonanno ea 2005, Hannam ea 1308.3271)
- Aligned-spin waveforms, rotated into precessing frame

Harald Pfeiffer Cardiff University July 2, 2014

Mixed BH-NS binaries

❖ For high mass-ratio, low-spin: *BH-NS* ≣ *BH=BH*

• NS eaten by BH in one piece, no disruption

Near future

- ❖ Large sample of aligned spin BBH GW
	- $q=1,2,3$
	- $-0.9 \leq S_{1/2}/M^2 \leq 0.9$

- ❖ Independent test of EOB and other GW models
- ❖ Independent test of BBH GW detection pipelines

