Analytical and numerical modeling of precessing binary black holes

Harald Pfeiffer Canadian Institute for Theoretical Astrophysics

Physics Seminar, Cardiff University, July 2, 2014

$$H = \frac{1}{2}m_1\dot{\mathbf{x}}_1^2 + \frac{1}{2}m_2\dot{\mathbf{x}}_2^2 - \frac{m_1m_2}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

Harald Pfeiffer Cardiff University July 2, 2014

$$H = \frac{1}{2}m_1\dot{\mathbf{x}}_1^2 + \frac{1}{2}m_2\dot{\mathbf{x}}_2^2 - \frac{m_1m_2}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

$$H = \frac{1}{2} \frac{m_1 m_2}{M} \left(\dot{\mathbf{x}}_1 - \dot{\mathbf{x}}_2 \right)^2 + \frac{m_1 m_2}{|\mathbf{x}_1 - \mathbf{x}_2|} + \frac{1}{2} M \left(\frac{m_1}{M} \dot{\mathbf{x}}_1 + \frac{m_2}{M} \dot{\mathbf{x}}_2 \right)^2$$

Harald Pfeiffer Cardiff University July 2, 2014

$$H = \frac{1}{2}m_1\dot{\mathbf{x}}_1^2 + \frac{1}{2}m_2\dot{\mathbf{x}}_2^2 - \frac{m_1m_2}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

$$H = \frac{1}{2} \frac{m_1 m_2}{M} \left(\dot{\mathbf{x}}_1 - \dot{\mathbf{x}}_2 \right)^2 + \frac{m_1 m_2}{|\mathbf{x}_1 - \mathbf{x}_2|} \\ + \frac{1}{2} M \left(\frac{m_1}{M} \dot{\mathbf{x}}_1 + \frac{m_2}{M} \dot{\mathbf{x}}_2 \right)^2$$

Center of mass

Harald Pfeiffer Cardiff University July 2, 2014

$$H = \frac{1}{2}m_1\dot{\mathbf{x}}_1^2 + \frac{1}{2}m_2\dot{\mathbf{x}}_2^2 - \frac{m_1m_2}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

 $\mathbf{r} = \mathbf{x}_1 - \mathbf{x}_2$ moves in central potential

$$H = \frac{1}{2} \frac{m_1 m_2}{M} \left(\dot{\mathbf{x}}_1 - \dot{\mathbf{x}}_2 \right)^2 + \frac{m_1 m_2}{|\mathbf{x}_1 - \mathbf{x}_2|} + \frac{1}{2} M \left(\frac{m_1}{M} \dot{\mathbf{x}}_1 + \frac{m_2}{M} \dot{\mathbf{x}}_2 \right)^2$$

Center of mass

Harald Pfeiffer Cardiff University July 2, 2014

/

$$H = \frac{1}{2}m_1\dot{\mathbf{x}}_1^2 + \frac{1}{2}m_2\dot{\mathbf{x}}_2^2 - \frac{m_1m_2}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

$$\mathbf{r} = \mathbf{x}_1 - \mathbf{x}_2$$
 moves in central potential

$$H = \frac{1}{2} \frac{m_1 m_2}{M} \left(\dot{\mathbf{x}}_1 - \dot{\mathbf{x}}_2 \right)^2 + \frac{m_1 m_2}{|\mathbf{x}_1 - \mathbf{x}_2|} + \frac{1}{2} M \left(\frac{m_1}{M} \dot{\mathbf{x}}_1 + \frac{m_2}{M} \dot{\mathbf{x}}_2 \right)^2$$

$$\mathbf{r}(\phi) = \frac{p}{1 + \varepsilon \cos \phi}$$
planet
Sun

Center of mass

General relativistic two-body problem

- Black holes
- Event horizons
- Black hole spin
- Orbit precession
- Spin precession
- Periastron advance
- Gravitational waves
- Merger
- Remnant black hole kick
- Ten 3-dim. partial differential equations

Patrick Fraser, University of Toronto

Combine analytical <u>and</u> numerical calculations to investigate BBH

General relativistic two-body problem

Patrick Fraser, University of Toronto

Combine analytical <u>and</u> numerical calculations to investigate BBH

Harald Pfeiffer Cardiff University July 2, 2014

Black Holes, Event Horizons

Harald Pfeiffer Cardiff University July 2, 2014

Black hole

- Made entirely of warped space-time
 - Curvature of space
 - Slowing of flow of time
 - Dragging of space around BH

Courtesy Kip Thorne

Black hole

- Curvature of space
- Slowing of flow of time
- Dragging of space around BH

- Curved geometry changes causal structure
 - Tipping of light-cones
 - Event horizon

$$A_{\rm EH} = 4\pi r_S^2, \quad r_S = \frac{2GM}{c^2} = 3\frac{M}{M_{\odot}}$$
 km

Harald Pfeiffer Cardiff University July 2, 2014

Distance to black hole increases -->

Light moving **away** from center of black hole

Harald Pfeiffer Cardiff University July 2, 2014

Distance to black hole increases -->

Light moving **away** from center of black hole

Harald Pfeiffer Cardiff University July 2, 2014

Distance to black hole increases -->

Light moving **away** from center of black hole

Harald Pfeiffer Cardiff University July 2, 2014

Distance to black hole increases -->

Light moving **away** from center of black hole

Harald Pfeiffer Cardiff University July 2, 2014

Distance to black hole increases -->

Light moving **away** from center of black hole

Harald Pfeiffer Cardiff University July 2, 2014

Distance to black hole increases -->

Light moving **away** from center of black hole

Harald Pfeiffer Cardiff University July 2, 2014

Event horizon for head-on colission

Harald Pfeiffer Cardiff University July 2, 2014

Space-time diagram

Black: Event Horizon White: select light-rays which merge onto Event Horizon

Harald Pfeiffer Cardiff University July 2, 2014

Mike Cohen; and Szilagyi, Lindblom, Scheel

Harald Pfeiffer Cardiff University July 2, 2014

Apparent Horizons

Surface where light *instantaneously* appears stationary

• Outgoing null-rays have zero expansion

Harald Pfeiffer Cardiff University July 2, 2014

Tools of the trade

Spectral Einstein Code

Post-Newtonian expansions

Harald Pfeiffer Cardiff University July 2, 2014

Goal: Space-time metric
 g_{ab} satisfying

 $R_{ab}[g_{ab}] = 0$

- Split spacetime into space and time
- Evolution equations

$$\partial_t \boldsymbol{g}_{ij} = \dots$$

 $\partial_t \boldsymbol{K}_{ij} = \dots$

Constraints

$$egin{aligned} R[g_{ij}]+K^2-K_{ij}K^{ij}&=0\
onumber
onumber$$

Harald Pfeiffer Cardiff University July 2, 2014

- Goal: Space-time metric
 g_{ab} satisfying
 R_{ab}[g_{ab}] = 0
- Split spacetime into space and time
- Evolution equations

$$\partial_t \boldsymbol{g}_{ij} = \dots$$

 $\partial_t \boldsymbol{K}_{ij} = \dots$

Constraints

$$egin{aligned} R[g_{ij}]+K^2-K_{ij}K^{ij}&=0\
onumber\
abla_jig(K^{ij}-g^{ij}Kig)&=0 \end{aligned}$$

Harald Pfeiffer Cardiff University July 2, 2014

- Goal: Space-time metric
 g_{ab} satisfying
 - $R_{ab}[g_{ab}] = 0$
- Split spacetime into space and time
- Evolution equations

$$\partial_t \boldsymbol{g}_{ij} = \dots$$

 $\partial_t \boldsymbol{K}_{ij} = \dots$

Constraints

$$egin{aligned} R[g_{ij}]+K^2-K_{ij}K^{ij}&=0\
onumber
onumber$$

Harald Pfeiffer Cardiff University July 2, 2014

- Goal: Space-time metric g_{ab} satisfying
 - $R_{ab}[g_{ab}] = 0$
- Split spacetime into space and time
- Evolution equations

$$\partial_t \boldsymbol{g}_{ij} = \dots$$

 $\partial_t \boldsymbol{K}_{ij} = \dots$

Constraints

$$egin{aligned} R[g_{ij}]+K^2-K_{ij}K^{ij}&=0\
onumber\
abla_jig(K^{ij}-g^{ij}Kig)&=0 \end{aligned}$$

Harald Pfeiffer Cardiff University July 2, 2014

Numerics I: Spectral methods

Expand in basis-functions, solve for coefficients

$$u(x,t) = \sum_{k=1}^{N} \tilde{u}(t)_k \Phi_k(x)$$

Compute derivatives analytically

$$u'(x,t) = \sum_{k=1}^{N} \tilde{u}(t)_k \Phi'_k(x)$$

Compute nonlinearities in physical space

Cardiff University

July 2, 2014

Harald Pfeiffer

Spectral

More widely used: Finite differences

Numerics II: Black Hole Excision

Artificial boundary inside horizon time Singularity space

Harald Pfeiffer Cardiff University July 2, 2014

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

Harald Pfeiffer Cardiff University July 2, 2014

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

Harald Pfeiffer Cardiff University July 2, 2014

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

Harald Pfeiffer Cardiff University July 2, 2014

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

Harald Pfeiffer Cardiff University July 2, 2014

IV: Merger & Ringdown

* Mark Scheel, Bela Szilagyi

Szilagyi, Lindblom, Scheel 08, Hemberger ea, 13

Close to merger

- Switch domain-decomposition
- Active gauge conditions
- Adaptive Mesh Refinement

After common horizon

• Switch to distorted concentric shells

V. Recent improvements

- Szilagyi: Adaptive Mesh Refinement
- Blackman & Szilagyi: Spectral Cauchy Characteristic Evolution
- Lovelace et al: Very high spin simulations
 S/M²=0.97, 0.98, and going
- Ossokine, HP et al: Precessing binaries
- Ossokine, HP et al: More robust initial data
 - higher spins, higher mass-ratio, lower eccentricity, less CPU time

Post-Newtonian Theory

Numerous workers over many decades

- Expand Einstein's equations in powers of (v/c)²
 - Newtonian like equations of motion

, 0-PN (Newtonian)

 $a_1^i = -rac{Gm_2n_{12}^i}{r_{12}^2}$

Harald Pfeiffer Cardiff University July 2, 2014

Post-Newtonian Theory

- Expand Einstein's equations in powers of (v/c)²
 - Newtonian like equations of motion

$$\begin{aligned} a_{1}^{i} &= -\frac{Gm_{2}n_{12}^{i}}{r_{12}^{2}} \\ &+ \frac{1}{c^{2}} \Biggl\{ \Biggl[\frac{5G^{2}m_{1}m_{2}}{r_{12}^{3}} + \frac{4G^{2}m_{2}^{2}}{r_{12}^{3}} + \frac{Gm_{2}}{r_{12}^{2}} \left(\frac{3}{2}(n_{12}v_{2})^{2} - v_{1}^{2} + 4(v_{1}v_{2}) - 2v_{2}^{2} \right) \Biggr] n_{12}^{i} \end{aligned} 2 - PN \quad (\vee/C)^{A} 4 \\ &+ \frac{Gm_{2}}{r_{12}^{3}} \left(4(n_{12}v_{1}) - 3(n_{12}v_{2}) \right) v_{12}^{i} \Biggr\} \\ &+ \frac{1}{c^{4}} \Biggl\{ \Biggl[-\frac{57G^{3}m_{1}^{2}m_{2}}{4r_{12}^{4}} - \frac{69G^{3}m_{1}m_{2}^{2}}{2r_{12}^{4}} - \frac{9G^{3}m_{2}^{3}}{r_{12}^{4}} \\ &+ \frac{Gm_{2}}{r_{12}^{3}} \left(-\frac{15}{8}(n_{12}v_{2})^{4} + \frac{3}{2}(n_{12}v_{2})^{2}v_{1}^{2} - 6(n_{12}v_{2})^{2}(v_{1}v_{2}) - 2(v_{1}v_{2})^{2} + \frac{9}{2}(n_{12}v_{2})^{2}v_{2}^{2} \\ &+ 4(v_{1}v_{2})v_{2}^{2} - 2v_{2}^{4} \Biggr\} \\ &+ \frac{G^{2}m_{1}m_{2}}{r_{12}^{3}} \left(\frac{39}{2}(n_{12}v_{1})^{2} - 39(n_{12}v_{1})(n_{12}v_{2}) + \frac{17}{2}(n_{12}v_{2})^{2} - \frac{15}{4}v_{1}^{2} - \frac{5}{2}(v_{1}v_{2}) + \frac{5}{4}v_{2}^{2} \Biggr) \\ &+ \frac{G^{2}m_{1}m_{2}}{r_{12}^{3}} \left(\frac{39}{2}(n_{12}v_{1})^{2} - 4(n_{12}v_{1})(n_{12}v_{2}) - 6(n_{12}v_{2})^{2} - 8(v_{1}v_{2}) + 4v_{2}^{2} \Biggr) \Biggr] n_{12}^{i} \\ &+ \left[\frac{G^{2}m_{1}m_{2}}{r_{12}^{3}} \left(-2(n_{12}v_{1}) - 2(n_{12}v_{2}) \right) + \frac{G^{2}m_{1}m_{2}}{r_{12}^{3}} \left(-\frac{63}{4}(n_{12}v_{1}) + \frac{55}{4}(n_{12}v_{2}) \right) \\ &+ \left\{ \frac{Gm_{2}}{r_{12}} \left(-6(n_{12}v_{1})(n_{12}v_{2})^{2} + \frac{9}{2}(n_{12}v_{2})^{3} + (n_{12}v_{2})v_{1}^{2} - 4(n_{12}v_{1})(v_{1}v_{2}) \\ &+ 4(n_{12}v_{2})(v_{1}v_{2}) + 4(n_{12}v_{1})v_{2}^{2} - 5(n_{12}v_{2})v_{2}^{2} \right) \Biggr] v_{12}^{i} \Biggr\}$$

Harald Pfeiffer Cardiff University July 2, 2014

Expand Einstein's equations in powers of (v/c)²

 Newtonian like equations of motion: $+\frac{1}{c^5} \left\{ \left[\frac{208G^3m_1m_2^2}{15r_{12}^4}(n_{12}v_{12}) - \frac{24G^3m_1^2m_2}{5r_{12}^4}(n_{12}v_{12}) + \frac{12G^2m_1m_2}{5r_{12}^3}(n_{12}v_{12})v_{12}^2 \right] n_{12}^i$ $+ \left[\frac{8G^3m_1^2m_2}{5r_{12}^4} - \frac{32G^3m_1m_2^2}{5r_{12}^4} - \frac{4G^2m_1m_2}{5r_{12}^3}v_{12}^2 \right] v_{12}^i \right\}$ $+\frac{1}{c^6} \Biggl\{ \Biggl[\frac{Gm_2}{r_{12}^2} \Biggl(\frac{35}{16} (n_{12}v_2)^6 - \frac{15}{8} (n_{12}v_2)^4 v_1^2 + \frac{15}{2} (n_{12}v_2)^4 (v_1v_2) + 3(n_{12}v_2)^2 (v_1v_2)^2 \Biggr] \Biggr\}$ $-\frac{15}{2}(n_{12}v_2)^4v_2^2+\frac{3}{2}(n_{12}v_2)^2v_1^2v_2^2-12(n_{12}v_2)^2(v_1v_2)v_2^2-2(v_1v_2)^2v_2^2$ $+\frac{15}{2}(n_{12}v_2)^2v_2^4+4(v_1v_2)v_2^4-2v_2^6$ $+\frac{G^2m_1m_2}{r_{12}^3}\left(-\frac{171}{8}(n_{12}v_1)^4+\frac{171}{2}(n_{12}v_1)^3(n_{12}v_2)-\frac{723}{4}(n_{12}v_1)^2(n_{12}v_2)^2\right)$ $+\frac{383}{2}(n_{12}v_1)(n_{12}v_2)^3-\frac{455}{8}(n_{12}v_2)^4+\frac{229}{4}(n_{12}v_1)^2v_1^2$ $-\frac{205}{2}(n_{12}v_1)(n_{12}v_2)v_1^2+\frac{191}{4}(n_{12}v_2)^2v_1^2-\frac{91}{8}v_1^4-\frac{229}{2}(n_{12}v_1)^2(v_1v_2)$ + $244(n_{12}v_1)(n_{12}v_2)(v_1v_2) - \frac{225}{2}(n_{12}v_2)^2(v_1v_2) + \frac{91}{2}v_1^2(v_1v_2)$ $-\frac{177}{4}(v_1v_2)^2+\frac{229}{4}(n_{12}v_1)^2v_2^2-\frac{283}{2}(n_{12}v_1)(n_{12}v_2)v_2^2$ $+\frac{259}{4}(n_{12}v_2)^2v_2^2-\frac{91}{4}v_1^2v_2^2+43(v_1v_2)v_2^2-\frac{81}{8}v_2^4\bigg)$ $+\frac{G^2m_2^2}{r_{12}^3}\left(-6(n_{12}v_1)^2(n_{12}v_2)^2+12(n_{12}v_1)(n_{12}v_2)^3+6(n_{12}v_2)^4\right)$ $+4(n_{12}v_1)(n_{12}v_2)(v_1v_2)+12(n_{12}v_2)^2(v_1v_2)+4(v_1v_2)^2$ $-4(n_{12}v_1)(n_{12}v_2)v_2^2 - 12(n_{12}v_2)^2v_2^2 - 8(v_1v_2)v_2^2 + 4v_2^4$ $+\frac{G^3m_2^3}{r_{12}^4}\left(-(n_{12}v_1)^2+2(n_{12}v_1)(n_{12}v_2)+\frac{43}{2}(n_{12}v_2)^2+18(v_1v_2)-9v_2^2\right)$ $+\frac{G^3m_1m_2^2}{r_{12}^4}\left(\frac{415}{8}(n_{12}v_1)^2-\frac{375}{4}(n_{12}v_1)(n_{12}v_2)+\frac{1113}{8}(n_{12}v_2)^2-\frac{615}{64}(n_{12}v_{12})^2\pi^2\right.$ $+ 18v_1^2 + \frac{123}{64}\pi^2 v_{12}^2 + 33(v_1v_2) - \frac{33}{2}v_2^2$

2.5-PN and 3-PN

$$\begin{split} &+ \frac{G^3 m_1^2 m_2}{r_{12}^2} \left(-\frac{45887}{168} (n_{12} v_1)^2 + \frac{24025}{42} (n_{12} v_1) (n_{12} v_2) - \frac{10469}{42} (n_{12} v_2)^2 + \frac{48197}{840} v_1^2 \right. \\ &- \frac{36227}{420} (v_1 v_2) + \frac{36227}{840} v_2^2 + 110 (n_{12} v_{12})^2 \ln \left(\frac{r_{12}}{r_1'} \right) - 22 v_{12}^2 \ln \left(\frac{r_{12}}{r_1'} \right) \right) \\ &+ \frac{16G^4 m_2^4}{r_{12}^5} + \frac{G^4 m_1^2 m_2^2}{r_{12}^5} \left(175 - \frac{41}{16} \pi^2 \right) + \frac{G^4 m_1^3 m_2}{r_{12}^5} \left(-\frac{3187}{1260} + \frac{44}{3} \ln \left(\frac{r_{12}}{r_1'} \right) \right) \\ &+ \frac{G^4 m_1 m_2^3}{r_{12}^5} \left(\frac{110741}{630} - \frac{41}{16} \pi^2 - \frac{44}{3} \ln \left(\frac{r_{12}}{r_2'} \right) \right) \right] n_{12}^4 \\ &+ \left[\frac{Gm_2}{r_{12}^2} \left(\frac{152}{(n_{12} v_1) (n_{12} v_2)^4} - \frac{45}{8} (n_{12} v_2)^5 - \frac{3}{2} (n_{12} v_2)^3 v_1^2 + 6(n_{12} v_1) (n_{12} v_2)^2 (v_{12} v_2) \right. \\ &- 6(n_{12} v_2)^3 (v_1 v_2) - 2(n_{12} v_2) (v_1 v_2)^2 - 12(n_{12} v_1) (n_{12} v_2)^2 v_2^2 + 12(n_{12} v_2)^3 v_2^2 \\ &+ (n_{12} v_2) v_1^2 v_2^2 - 4(n_{12} v_1) (v_1 v_2) v_2^2 + 8(n_{12} v_2) (v_1 v_2) v_2^2 + 4(n_{12} v_1) v_2^4 \\ &- 7(n_{12} v_2) v_1^2 v_2^2 - 4(n_{12} v_1) (v_{12} v_2)^2 + 2(n_{12} v_2)^3 + 2(n_{12} v_1) (v_1 v_2) \\ &+ 4(n_{12} v_2) (v_1 v_2) - 2(n_{12} v_1) v_2^2 - 4(n_{12} v_2) v_2^2 \right) \\ &+ \frac{G^2 m_1 m_2}{r_{12}^3} \left(- \frac{243}{4} (n_{12} v_1)^3 + \frac{565}{4} (n_{12} v_1)^2 (n_{12} v_2) - \frac{269}{4} (n_{12} v_1) (n_{12} v_2)^2 \\ &- \frac{95}{12} (n_{12} v_2)^3 + \frac{207}{8} (n_{12} v_1) v_1^2 - \frac{137}{8} (n_{12} v_2) v_1^2 - 36(n_{12} v_1) (v_1 v_2) \\ &+ \frac{27}{4} (n_{12} v_2) (v_1 v_2) + \frac{81}{8} (n_{12} v_1) v_2^2 + \frac{83}{8} (n_{12} v_2) v_2^2 \right) \\ &+ \frac{G^3 m_1^3 m_2^3}{r_{12}^4} \left(-\frac{307}{8} (n_{12} v_1) + \frac{479}{8} (n_{12} v_2) + \frac{123}{32} (n_{12} v_{12}) \pi^2 \right) \\ &+ \frac{G^3 m_1 m_2^3}{r_{12}^4} \left(\frac{31397}{420} (n_{12} v_1) - \frac{36227}{420} (n_{12} v_2) - 44(n_{12} v_{12}) \ln \left(\frac{r_{12}}{r_1'} \right) \right) \right] v_{12}^4 \right\}$$

Harald Pfeiffer Cardiff University July 2, 2014

Post-Newtonian Theory

Newtonian-like equations known to (v/c)^7

• GW emission appears at $(v/c)^5$; fractional accuracy "only" $(v/c)^2$

For <u>circular orbits</u>, one can compute directly GW energy flux

$$\mathcal{L} = \frac{32c^5}{5G}\nu^2 x^5 \Big\{ 1 + \left(-\frac{1247}{336} - \frac{35}{12}\nu \right) x + 4\pi x^{3/2} + \left(-\frac{44711}{9072} + \frac{9271}{504}\nu + \frac{65}{18}\nu^2 \right) x^2 \\ + \left(-\frac{8191}{672} - \frac{583}{24}\nu \right) \pi x^{5/2} \\ + \left[\frac{6643739519}{69854400} + \frac{16}{3}\pi^2 - \frac{1712}{105}C - \frac{856}{105}\ln(16x) \\ + \left(-\frac{134543}{7776} + \frac{41}{48}\pi^2 \right) \nu - \frac{94403}{3024}\nu^2 - \frac{775}{324}\nu^3 \Big] x^3 \\ + \left(-\frac{16285}{504} + \frac{214745}{1728}\nu + \frac{193385}{3024}\nu^2 \right) \pi x^{7/2} + \mathcal{O}\left(\frac{1}{c^8} \right) \Big\}.$$

- Inspiral-rate w/ fractional accuracy (v/c)^7
- Spin contributions work in progress, as are the (v/c)^8 terms

Periastron advance

A.H. Mroue, HP, L.E. Kidder, S.A. Teukolsky 2009

A. Le Tiec, A.H. Mroue, L. Barack, A. Buonanno, HP, N. Sago, A. Taracchini, 2011

A. Le Tiec + UMD + SXS, 1309.0541

T. Hinderer + UMD + SXS, 1309.0544

Periastron advance

AQUE TOTAL

K=1.28

Equal mass BBH

Mroue, et al 2009, Le Tiec et al 2011

Harald Pfeiffer Cardiff University July 2, 2014

Periastron advance

Equal mass BBH Mass-ratio q=1/81.6 q=1, e~0.05 1.7 Test Mass q=1, 3PN $q=1, e\sim 5 \times 10^{-5}$ Test-mass $q=2, e=3x10^{-5}$ 1.5 Ο q=1, 3PN 1.6 $q=3, e=2x10^{-5}$ $q=4, e=3x10^{-5}$ Ω_{Φ}/Ω_{r} 1.4 $\Omega_{\Phi/\Omega}$ q=6, e=8x10⁻⁵ 1.5 1.3 1.4 1.2 1.3 0.015 0.02 0.025 0.015 0.03 0.02 0.025 0.03 0.035 0.04 0.01 $M \Omega_{\Phi}$ $M \Omega_{\Phi}$

Mroue, et al 2009, Le Tiec et al 2011

Harald Pfeiffer Cardiff University July 2, 2014

Comparison w/ analytical calc's

Comparison w/ analytical calc's

Comparison w/ analytical calc's

Periastron Advance for Spinning Primary

- No results for self-force calculations on Kerr background
- Can we measure the self-force term from simulations?

Available information:

- Kerr geodesics
- post-Newtonian expansions
- Combine and incorporate symmetry under exchange of BH labels:

$$W_{SB} = 1 - 6x + \left[(4 + 4\Delta - 2\nu) \chi_1 + (4 - 4\Delta - 2\nu) \chi_2 \right] x^{3/2} + \left[\left(-\frac{3}{2} - \frac{3}{2}\Delta + 3\nu \right) \chi_1^2 - 6\nu \chi_1 \chi_2 + \left(-\frac{3}{2} + \frac{3}{2}\Delta + 3\nu \right) \chi_2^2 \right] x^2 \\ - \left[\left(2 + 2\Delta + \frac{45}{2}\nu + \frac{17}{2}\Delta\nu \right) \chi_1 + \left(2 - 2\Delta + \frac{45}{2}\nu - \frac{17}{2}\Delta\nu \right) \chi_2 \right] x^{5/2} + \left[\left(4 + 4\Delta + \frac{15}{2}\nu + \frac{31}{2}\Delta\nu - 11\nu^2 \right) \chi_1^2 \right] x^2 \\ + (36 + 22\nu) \nu \chi_1 \chi_2 + \left(4 - 4\Delta + \frac{15}{2}\nu - \frac{31}{2}\Delta\nu - 11\nu^2 \right) \chi_2^2 \right] x^3 + \mathcal{O}(x^{7/2}).$$
(34)

31

Measuring self-force for spinning BBH

The full periastron advance is

$$W = W_{\rm SB} + \sum_{n=1}^{\infty} \nu^n W_n,$$

• Consider difference $\delta W \equiv W_{\rm NR} - W_{\rm SB} = W_1 \nu + \mathcal{O}(\nu^2)$

Measuring self-force for spinning BBH

* The gravitational self-force contribution is the entire term proportional to the mass-ratio $\bar{q} = m_{
m small}/m_{
m big} \leq 1$

 $W = W_{\text{Kerr}}(x; \boldsymbol{\chi}) + \bar{q} W_{\text{GSF}}(x; \boldsymbol{\chi}) + \mathcal{O}(\bar{q}^2)$

$$W_{\rm GSF} = W_1 - 10\chi v^3 + 6\chi^2 v^4 - 27\chi v^5 + 25\chi^2 v^6 + (\gamma - 4)\chi^3 v^7.$$

$$W_1^{\text{fit}} = 14x^2 \frac{1+c_1x}{1+c_2x+c_3x^2},$$

Have computed self-force result from NR simulations at mass-ratios 1,..., 1/8 !

Le Tiec ea 1309.0541

 $c_1^{\text{down}} = 1.1973,$ $c_2^{\text{down}} = -6.88457,$ $c_3^{\text{down}} = 37.3406.$

Gravitational Waves

Harald Pfeiffer Cardiff University July 2, 2014

Precessing BH-BH

- Modulated amplitude
- Temporal harmonics
- Dependence on inclination
- Modified phasing

SXS numerical waveform catalog

A. Mroue, M.Scheel, B.Szilagyi, HP et al, 1304.6077, PRL 2013 Data publicly available <u>www.black-holes.org/waveforms</u>

SXS catalog: parameter space coverage

Investigate precession dynamics

Numerical simulations & post-Newtonian predictions

Ossokine ea, in prep

Harald Pfeiffer Cardiff University July 2, 2014

Numerics (red) agree w/ post-Newtonian (black)

Ossokine ea, in prep

Harald Pfeiffer Cardiff University July 2, 2014

Convergence of precessing PN

orbital plane precession quick, monotonic convergence

Ossokine ea, in prep

orbital phase slow, erratic convergence

As bad as non-precessing PN requires many-orbit NR & careful modeling

Effective-one-body models

- Buonanno, Damour 1999; many papers since
- Effective Hamiltonian to capture conservative dynamics

$$H = \mu \sqrt{p_r^2 + A(r) \left[1 + \frac{p_r^2}{r^2} + 2(4 - 3\nu)\nu \frac{p_r^4}{r^2} \right]}, \qquad A(r) = \sum_{k=0}^4 \frac{a_k(\nu)}{r^k} + \frac{a_5(\nu)}{r^5}$$

Radiation reaction terms

$$\frac{dp_r}{dt} = -\frac{\partial H}{\partial p_r} + a_{\rm RR}^r \frac{\dot{r}}{r^2 \Omega} \widehat{\mathcal{F}}_{\phi}$$

$$\frac{dp_{\varphi}}{dt} = 0 - \frac{v_{\Omega}^3}{\nu V_{\phi}^6} F_4^4(V_{\phi}; \nu, v_{\text{pole}}), \quad \text{using 4-PN term } \mathcal{F}_{8,\nu=0} + \nu A_8$$

- Attach BH ringdown modes
- **★** Fit free parameters to NR simulations

Advantages of EOB

EOB Hamiltonian provides complete inspiral dynamics

- from equal masses to extreme mass-ratio
- non-adiabatic inspiral/plunge features
- BH Trajectories, Spin-evolution, waveforms

* Well-identified free functions, specifically A(v)

- Can use any of these aspects to improve inspiral model
 - post-Newtonian determines low powers in velocity
 - <u>Kerr geodesic</u> limit determines A(v=0)
 - <u>Self-force calculations</u> feed into O(v)-terms
 - Numerical relativity feeds into comparable mass-ratio contributions

It works!

Disadvantages of EOB

Very complicated, many "knobs":

- higher order PN terms
- non-adiabatic corrections
- waveform non-quasi-circular corrections
- Pade resummation (less emphasized recently)
- Ever evolving: Many slightly different versions
 - Continued improvements, both physically motivated and to improve agreement with NR
 - Difficult to distinguish prediction from postdiction

Difficult to identify why EOB works well:

- Deep physical insight?
- Sheer number of data used from elsewhere (NR, PN, Self-force, ...)?

Disadvantages II: Inspiral → Ringdown

- * EOB-inspiral until AGW,EOB~max(AGW,NR)
- Attach BH perturbation ringdown modes with comb-matching

 $h_{\ell m}^{\text{insp-plunge}}(t_{\text{match}}^{\ell m} + \frac{2k - N + 1}{2N - 2} \Delta t_{\text{match}}^{\ell m}) = h_{\ell m}^{\text{merger-RD}}(t_{\text{match}}^{\ell m} + \frac{2k - N + 1}{2N - 2} \Delta t_{\text{match}}^{\ell m}), \\ (k = 0, 1, 2, \cdots, N - 1). \quad (21)$

Buonnano ea, PRD 79, 124028

Each (Im) mode matched at different time, with different comb-spacing. It all matters.

Analytical waveform modeling

Effective one body

- Buonanno, Damour 1999; many papers since
- Effective Hamiltonian to capture conservative dynamics

$$H = \mu \sqrt{p_r^2 + A(r) \left[1 + \frac{p_r^2}{r^2} + 2(4 - 3\nu)\nu \frac{p_r^4}{r^2} \right]}, \qquad A(r) = \sum_{k=0}^4 \frac{a_k(\nu)}{r^k} + \frac{a_5(\nu)}{r^5}$$

Radiation reaction terms

$$\frac{dp_r}{dt} = -\frac{\partial H}{\partial p_r} + a_{\rm RR}^r \frac{\dot{r}}{r^2 \Omega} \widehat{\mathcal{F}}_{\phi}$$

$$\frac{dp_{\varphi}}{dt} = 0 - \frac{v_{\Omega}^3}{\nu V_{\phi}^6} F_4^4(V_{\phi}; \nu, v_{\text{pole}}), \quad \text{using 4-PN term } \mathcal{F}_{8,\nu=0} + \nu A_8$$

- Attach BH ringdown modes
- **★** Fit free parameters to NR simulations

EOB progress (I)

* Non-spinning case: Error-estimate of EOB fit

6100

6000

Taracchini ea, 1311.2544

Wednesday, July 2, 14

Error of model

1%

0.1%

0.01%

6500

6400

6300

 $(t - r_{*}) / M$

6200

EOB progress (3)

* <u>Precessing case</u>: First generic, precessing EOB models

- Generic spin EOB Hamiltonian (Buonanno ea 2005, Hannam ea 1308.3271)
- Aligned-spin waveforms, rotated into precessing frame

Mixed BH-NS binaries

* For high mass-ratio, low-spin: $BH-NS \equiv BH=BH$

• NS eaten by BH in one piece, no disruption

Near future

- Large sample of aligned spin BBH GW
 - q=1,2,3
 - -0.9<=S_{1/2}/M²<=0.9

- Independent test of EOB and other GW models
- Independent test of BBH GW detection pipelines

