Gravitational Waves Seminar Friday, October 24, 2014

Overview: from small to big

Overview: from small to big

Very small: one virus

 One of the simplest, yet the most abundant biological entity;

 Fairly recently discovered (late 1890s);

 Very simple structure: a bundle of genetic material (RNA or DNA) encased in a protein shell; very small: 200-400 nm;

One virus: what it does

 Like a Somali pirate, It hijacks a healthy cell (target) and transfers its genetic material;

 The cell becomes hard-wired to start producing replicas of the original virus;

 It will do so until its premature and violent death: either the viral genetic material kills the cell or, in most cases, it will explode releasing the new viral particles;

Many viruses: serial killers

Spanish flu – A/H1N1

Many viruses: serial killers

 The Spanish flu (1918-1920) spread across the Globe killing 50-100 million people;

 Caused by a mutation from birds to pigs to humans;

 Named Spanish flu due to wartime censorship that was not in effect in Spain (neutral), true origin was France:

Conventional (lab) virology

unconventional Computational virology

Use mathematical models of viral dynamics and computer power to evaluate virus parameters → predict viral life-cycle and mutations → prevention and treatment (drugs);

No latent phase

$$\frac{dT}{dt} = -\beta TV$$

$$\frac{dI}{dt} = \beta TV - \delta I$$

$$\frac{dV}{dt} = pI - cV$$

or with a latent phase

$$\frac{dT}{dt} = -\beta TV$$

$$\frac{dE}{dt} = \beta TV - kE \qquad (2)$$

$$\frac{dI}{dt} = kE - \delta I$$

$$\frac{dV}{dt} = pI - cV$$

Ordinary Differential Equation systems

Computational virology

Use mathematical models of viral dynamics and computer power to evaluate virus parameters → predict viral life-cycle and mutations → prevention and treatment (drugs);

No latent phase $\frac{dT}{dt} = -\beta T V$ $\frac{dI}{dt} = \beta T V - \delta I$ $\frac{dV}{dt} = pI - cV$ (1) or with a latent phase $\frac{dT}{dt} = -\beta T V$ $\frac{dE}{dt} = \beta T V - kE$ (2) $\frac{dI}{dt} = kE - \delta I$ $\frac{dV}{dt} = pI - cV$

Each equation describes one dynamical viral phase

Viral load time evolution

Viral load time evolution

Parameter estimation

8-14 parameters for one single model e.g. Basic Reproductive Number (R₀) → average number of new cases one will generate over an infectious period -

 A zombie!

distases		
Disease	Transmission	Ro
Measles	Airborne	12-18
Pertussis	Airborne droplet	12-17
Diphtheria	Saliva	6-7
Smallpox	Airborne droplet	5-7
Polio	Fecal-oral route	5-7
Rubella	Airborne droplet	5-7
Mumps	Airborne droplet	4-7
HIV/AIDS	Sexual contact	2-5
SARS	Airborne droplet	2-5 ^[2]
Influenza	Airborne droplet	2-3 ^[3]
(1918 pandemic strain)		
Ebola	Bodily fluids	1-2 [4
(2014 Ebola outbreak)		

Values of R₀ of well-known infectious

Parameter estimation

Correlated?

Correlated?

Pro's and con's

Pro: fairly new field with a lot of potential (include bioinformatics → viral genome mapping) and some results (prediction of H1N1-Brisbane 1997 flu mutation);

Con: lab data very poor → inconsistencies in data acquisition; very few data points per set, with enormous errors;

Con: strong regulation of publishable material from pharmaceutical companies (main funding sources).

Space Shuttle and MCMC

Use of direct MCMC to determine best re-entry parameters;

MCMC risk analysis before each flight.

Falkland Islands War (1982)

Decisive Factors: Harrier

ROYAL NAVY

CAndrew Brooks ab@AvCollect.com

Decisive Factors: Exocet

AM39 "Exocet" (Flying Fish) anti-ship missile: uses fast radar return analysis (matched filtering and Doppler pulse-timing) to choose its target;
 → flies too low to be detected at safe distances.

Decisive Factors: Exocet

ten one ten

111 101 101

Gravitational Waves Data

Gravitational Waves Data

Massive challenge: detection of perturbations of relative size of order 10⁻²¹ – 10⁻²³;

Use data that contains high levels of noise (not always of known origin) that, sometimes, perfectly mimics a true signal;

Make a strong detection statement;

Solve the two problems above and do this fast so that other telescopes (optical, X-ray, radio etc.) may follow-up and observe the source.

Gravitational Waves Sources

Lots of big, hot and angry astrophysical objects to look at:

 Compact binary mergers – either two neutron stars, one neutron star and a black hole or two black holes;

 Gamma-ray bursts – long (supernovae) or short (compact mergers);

 Supernovae, X-ray pulsars, neutron stars with mountains, neutron stars with earth(star)quakes, super- and hyper-massive neutron stars.

Gravitational Waves Analysis

Lots of advanced tools (geeky stuff):

 Fourier transforms, matched filtering, waveforms (Newtonian approximations or full Numerical Relativity), waveform banks;

 Coherence, incoherence, auto correlation, cross correlation, chi-squared tests;

• ...and lots of Bayesian inference

One does not simply detect Gravitational Waves easily

Gravitational Waves Data

A lot to learn ahead...so come to the Gravitational Physics seminar!

