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ABSTRACT

The coalescence of compact binaries containing neutron stars and black holes is thought to be one of
the most promising signals for advanced ground-based gravitational wave interferometers, with the
first direct detections expected over the next few years. The (mass) distribution of observable signals,
as predicted by population synthesis models, is highly uncertain, and poorly constrained parameters
in population synthesis models correspond to poorly constrained astrophysics (such as supernova kick
velocities, parameters governing the energetics of the common envelope evolution and the strength
of stellar winds) at various stages in the evolution of massive binary stars, the progenitors of binary
neutron star and binary black hole systems. We simulate gravitational wave observations from a series
of population synthesis models including known selection biases and measurement errors and compare
the results to the original catalogue of models using a Bayesian model selection framework. We show
that one can begin to rule out some models and thus begin to constrain the unknown astrophysics
within the first few years of regular detections.
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Modern astrophysical sources
Type 1a supernovae

Image credit: http://
www.darkenergysurvey.org/
science/SNTA.shtml
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Modern astrophysical sources

Tvype 1a supernovae

Figure 3. Observed magnitude
versus redshift is plotted for
well-measured distant’>* and
(in the inset) nearby’ type la su-
pernovae. For clarity, measure-
ments at the same redshift are
combined. At redshifts beyond
z = 0.1 (distances greater than
about 10? light-years), the cos-
mological predictions (indi-
cated by the curves) begin to
diverge, depending on the as-
sumed cosmic densities of
mass and vacuum energy. The
red curves represent models
with zero vacuum energy and
mass densities ranging from the
critical density p. down to zero
(an empty cosmos). The best fit
(blue line) assumes a mass
density of about p_/3 plus a
vacuum energy density twice
that large—implying an accel-
erating cosmic expansion.
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Modern astrophysical sources
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Modern astrophysical sources
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Figure 2 | Optical, NIR and X-ray light curves of GRB 130603B. Left axis,
optical and NIR; right axis, X-ray. Upper limits are 20 and error bars are 1¢. The
optical data (g, r and i bands) have been interpolated to the F606W band and
the NIR data have been interpolated to the F160W band using an average
spectral energy distribution at ~0.6 d (Supplementary Information). HST
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Modern astrophysical sources
X-ray binaries



Modern astrophysical sources

Binar

and Millisecond Pulsars

A l e I I l Frrd I Tl ] T I Pl B1534+12 A B1620-26 1
0 ,"l l
- . [
- - I /|
I~ n I' | " /\’: |
— - —t Il / \
,a)\ 5 — — ....’.v—.r—y.‘w—.-vN"“"/j . Il\_,\-'\(-v‘w—‘rw vww—\/"'/ V\
~ C ] 20 10 0 10 20 100 50 0 50 100
Q - —
£ —10 — — J1640+2224 , J1643-1224 |,
C N ] ) ." ‘."I '\'
8 — - 8 !,:'/ | / l'.
B 15— — 4 - [\ -
® - ] g/ N _‘_,—/ N
g 0 / = g 604020 0 20 40 60  -100 50 O 50 100
I General Relativity prediction 7 2 | J1713+0747, J1730-2304
t (7} | 1
G C ] 3 A I\
o =25 = S A A4l
= ~ . = [\ [
o : ] “1 £l l
E ~ N el N ettt Mttt
3 °F ] 604020 0 20 40 60 -100 50 0 50 100 150
- ] Jifad-1134 B1744-24A
—35 — ] |“ ,", \
- -1 | [
- N [
_40"11||1|111||1111||111111111111 /' MI ‘\k
...../l \
1975 1980 1985 YLS?O 1995 2000 2005 550 i00 150 300 250 T T S —
Longitude (deg) Longitude (deg)

Figure 1. Orbital decay of PSR B1913+16. The data points indicate the
observed change in the epoch of periastron with date while the parabola il-
lustrates the theoretically expected change in epoch for a system emitting
gravitational radiation, according to general relativity.

Taylor and Weisberg 2005
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Fi1G. 6.—Average pulse profiles for eight MSPs at a frequency of 1.4
GHz The arrows shown for J1730—2304 and J1744—1134 point to a
detected postcursor and precursor, respectively.

Kramer et al 1998
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Binary evolution

Do

Main-sequence stars, both >8 Mg

Common envelope: the NS spirals
into and expels the envelope of the

secondary
e O

Primary explodes as supernova NS—He-star binary
Roche-Lobe overflow possible

Secondary explodes as supernova

| o o
Mass transfef to neutron star Result: double—neutron-star system
from companion wind Example: PSR B1913+16

Image + credit http://www.sciencemag.org/content/304/5670/547/F1.expansion
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What about spinse

a) Main-sequence binary b) First mass-transfer phase
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Frame of reference
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Gerosa et al 2013
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Post-Newtonian evolution
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Spin-orbit resonances

Initially:
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Models for black hole spin
misalignment

O 1) Both aligned

O 2) Dynamically formed, isofropic distribution — remains
isotropic

O 3) Both BHs aligned prior to the second supernova —
equally misaligned afterwards - freely precess

O 4) Secondary aligned prior to the second supernova via
tides, primary misaligned (as in Gerosa et al 2013)
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What we might actually measure (1)

O Parameter estimation using LALINFERENCE_MCMC

O Inject and recover using PhenomP waveform model
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What we might actually measure (2)
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Double pulsar — messes this up

(a) Pre-SN orbit (b) Post-SN orbit with an on-centre kick (c) Observed Post-SN orbit
A

A

Fig. 1. Effect of SN kick on binary orbit. The pre-SN orbit containing pulsar A and pulsar B’s
progenitor is shown in (a). The effect of an on-center SN kick that slightly changes the inclination
of the orbit is illustrated in (b). Notice the post-SN alignment of the two pulsars’ spin axes. Part
(¢) illustrates the present-day orbit with a 130 degree misalignment between pulsar B's spin axis

and the orbital axis.

Farr et al 2011
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Conclusions/Future work

In general, spins in BBH may not be aligned with the orbital
angular momentum following a second supernova, leading to
precession of the spins

Spin-orbit resonances are effective in BBH systems with unequal
misalignment angles, which may be true for astrophysically
formed compact binaries

Resonances binaries are attracted to depends on the formation
mechanism of the binary

Looking for clustering in these angles therefore can tell you
about the compact binary channels

Runs currently ongoing — wish me luck!

Include some more physics, do some more work
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