Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000

Data Analysis of Continuous Gravitational Waves in the Advanced Detector Era

Erin Macdonald

Cardiff University

erin.macdonald@astro.cf.ac.uk

11 October, 2012

Cardiff University

Erin Macdonald

Background	Detection Criteria	Population Studies	Software injections and Mock Data Challenge	Next steps?
	00 00000 0		o 000 000000	

Outline

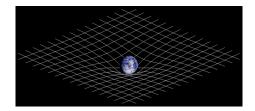
- 1 Background
 - Gravitational Waves
- 2 Detection Criteria
 - Current detection criteria
 - Detection confidence over various scenarios
 - Possible changes/additions for advanced era
- 3 Population Studies
 - Motion in the sky
- 4 Software injections and Mock Data Challenge
 - Software injection challenge
 - Distribution of pulsars
 - First tests of software injections
- 5 Next steps?
 - Future Work

Erin Macdonald

Background ●0000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000
Gravitational V	Vaves			

General Relativity

- Developed by Albert Einstein
- Space tells matter how to move, matter tells space how to behave
- Has been confirmed in all observations and experiments to date



Background 0●000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000
Gravitational V	Vaves			

Gravitational Waves

- "Ripples in spacetime"
- Travel at the speed of light
- Carry information about changing gravitational fields
- Derived from Einstein Field Equations:

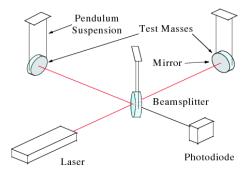
$$R_{\mu\nu} - rac{1}{2}g_{\mu\nu}R = rac{8\pi G}{c^4}T_{\mu\nu}$$

Background 00●00	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000	
Constitutional Mission					

Sources of Gravitational Waves

There are four primary classes of gravitational wave sources

- Single/Transient events
 - Stellar Collapse/Supernova
 - Binary Coalescence (BH/BH, NS/BH, NS/NS)
- Continuous Emission
 - Asymmetric neutron stars/pulsars
 - Stochastic background (Big bang remnant, cosmic strings)



Background 000€0	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000
Gravitational W	Javes			

Gravitational Wave Detectors

- Initially used "Weber bars" to search for specific frequencies
- Ground-based laser interferometers are currently used for greater frequency bands

Cardiff University

Erin Macdonald

Background 0000●	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000
Gravitational V	Vaves			

Advanced LIGO/Virgo

- Initial detectors completed science runs at and beyond design sensitivity
- Fully operational by 2015/16
- Currently upgrading detectors to a sensitivity which would result in regular detections

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000

1 Background

Gravitational Waves

2 Detection Criteria

- Current detection criteria
- Detection confidence over various scenarios
- Possible changes/additions for advanced era

3 Population Studies

Motion in the sky

4 Software injections and Mock Data Challenge

- Software injection challenge
- Distribution of pulsars
- First tests of software injections

5 Next steps?

Frin Macdonald

Future Work

Background 00000	Detection Criteria ●0 ○○○○○ ○	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000
Current detecti	ion criteria			

Continuous wave searches

There are three main types of searches for continuous waves:

- All-sky search
- Directed search
- Targeted search

Background 00000	Detection Criteria ○● ○○○○○ ○	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000
Current detecti	ion criteria			

Current detection criteria

The Continuous Wave (CW) working group has developed criteria for detection confidence

- Be able to exclude environmental/instrumental artifacts
 - No known instrumental artifact can contribute significantly to measured SNR (> 20%)
- Must be seen by two independent pipelines (SFTs and time-domain)
- Must be *self*-consistent
 - Combined SNR generally higher than for a single interferometer
 - The 95% confidence band for f, f, RA and DEC must overlap for interferometers with high SNR
 - Consistent time dependencies
 - Astrophysically self-consistent w.r.t. amplitude, frequency, spin-down and distance

Cardiff University

Background 00000	Detection Criteria ○○ ●○○○○ ○	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000	
Detection confidence over various scenarios					

Detection confidence over various scenarios

Isolated, non-glitching pulsar in all-sky search

- All-sky search will yield outliers for multi-months worth of data
- Utilise hierarchical algorithm to "zoom in" on signal, increase SNR to O(100)
- Can explore past data with known parameters to verify (handy aspect of CWs!)

Background 00000	Detection Criteria ○ ○ ○ ○	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000
Detection conf	idence over various scen	arios		

Isolated, non-glitching pulsar in directed search

- Directed search: location known, frequency unknown...
- Vary assumed source location to verify maximum SNR
- For long coherence times, location may shift and max SNR may grow faster

Isolated, non-glitching pulsar in targeted search

- Most difficult as little to no additional SNR gained through follow-up
- Alternative pipeline is straightforward to use and measure
- Examine signal with both Bayesian and frequentist searches
- Run same pipeline on other points in sky to assess bugs and uncertainties

Background 00000	Detection Criteria ○○ ○○○●○ ○	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000
Detection conf	idence over various scen	arios		

Binary pulsar signal

- Similar to criteria established for isolated pulsar in all-sky and directed searches
- More parameters for binaries, need to search unknown
- If binary signal is seen in an isolated search, SNR significantly lower than possible

Transient continuous wave signals, signals of lifetimes O(days-weeks)

- Would not increase SNR by increasing observation time
- Could still verify easily if strong to begin with
- If the transient signal repeats with same signal parameters
- Check coincidence with pulsar glitches, spindown
- Coincidence with non-targeted searches at an astrophysical source

Background 00000	Detection Criteria 00 00000	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000	
Possible changes/additions for advanced era					

Detections likely in advanced detectors, so need to test these criteria against realistic scenarios

- Study possible astrophysical issues for pipelines
- Conduct a mock-data challenge with O(1000) signals
- Test performance of algorithms, both alone and as hierarchical system

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000

1 Background

Gravitational Waves

2 Detection Criteria

- Current detection criteria
- Detection confidence over various scenarios
- Possible changes/additions for advanced era

3 Population Studies

Motion in the sky

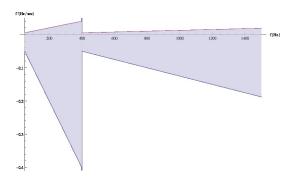
4 Software injections and Mock Data Challenge

- Software injection challenge
- Distribution of pulsars
- First tests of software injections

5 Next steps?

Frin Macdonald

Future Work

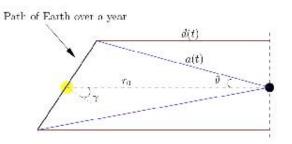


Background 00000	Detection Criteria 00 00000 0	Population Studies ●000000	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000
A 4 4 5 1 1 1 1				

Motion in the sky

Close is good, but not too close!

For advanced detectors, a detailed understanding of neutron star populations is necessary. Einstein@Home (all-sky) searches parameter space of f and \dot{f} :

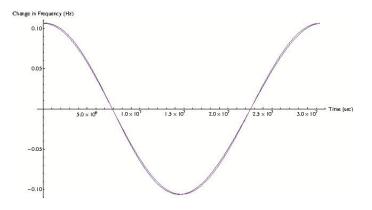

Erin Macdonald

Cardiff University

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000
Motion in the s	sky			

Parallax

Apparent motion of objects due to Earth's motion, results in Doppler shift of frequency

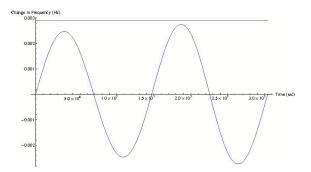


Cardiff University

Erin Macdonald

Background 00000	Detection Criteria 00 00000 0	Population Studies ○○●○○○○	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000
Motion in the sky				

Apparent change of frequency over a six month period for d(t) and a(t) at an extremely close initial r_0



Cardiff University

Erin Macdonald

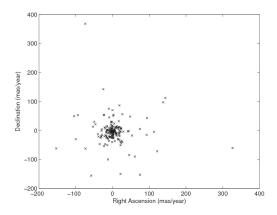
Background 00000	Detection Criteria 00 00000 0	Population Studies 000●000	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000
Motion in the	skv			

The difference between the frequencies for d(t) and a(t) with the Einstein@Home limit shown

The distance at which parallax becomes a problem is...

Background 00000	Detection Criteria 00 00000 0	Population Studies 0000€00	Software injections and Mock Data Challenge o ooo ooooooo	Next steps? 0000
Motion in the s	sky			

Erin Macdonald


Continuous Waves with Advanced Detectors

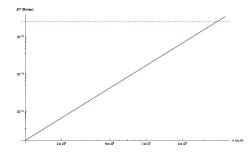
Cardiff University

Background 00000	Detection Criteria 00 00000 0	Population Studies 00000€0	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000
Motion in the s	sky			

Proper Motion

Stars' motion tangential to the line of sight as seen from the SSB

Erin Macdonald


Cardiff University

Background 00000	Detection Criteria 00 00000 0	Population Studies 000000●	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 0000
Motion in the s	sky			

• Δf is highly dependent on velocity:

$$\Delta \dot{f} = rac{f_0 v^2}{c} \left[rac{1}{r_0} + rac{t^2 v^4}{(r_0^2 + t^2 v^2)^{3/2}} - rac{1}{\sqrt{r_0^2 + t^2 v^2}}
ight]$$

• The velocity becomes an issue for Einstein@Home at 3.83×10^7 m s⁻¹, which would be an angular velocity of 10.3 arcsec yr⁻¹ at 100 pc.

Erin Macdonald

Cardiff University

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge 0 000 000000	Next steps? 0000

1 Background

Gravitational Waves

2 Detection Criteria

- Current detection criteria
- Detection confidence over various scenarios
- Possible changes/additions for advanced era

3 Population Studies

Motion in the sky

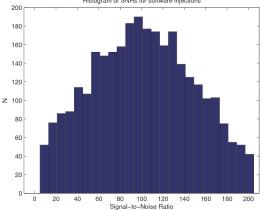
4 Software injections and Mock Data Challenge

- Software injection challenge
- Distribution of pulsars
- First tests of software injections

5 Next steps?

Future Work

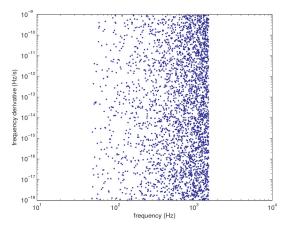
Frin Macdonald


Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge • • • • • • • • • • • • •	Next steps? 0000
Software injection challenge				

- 3000 isolated pulsar signals
- Inject into recent science run data (S6)
- Parameters:
 - \blacksquare Generated with $\mu_{\mathrm{SNR}}=$ 100 for targeted searches
 - One year integration on Hanford detector with S5 Sensitivity
 - Randomly distributed on the sky
 - **•** Random distribution of \dot{f} with < 5% spin-up

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o oo ooooo	Next steps? 0000
Distribution of	pulsars			

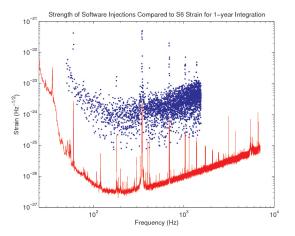
SNR distribution



Erin Macdonald

Background	Detection Criteria	Population Studies	Software injections and Mock Data Challenge	Next steps?
	00000		000	
			000000	
Distribution of	pulsars			

Frequency and frequency derivatives



Erin Macdonald

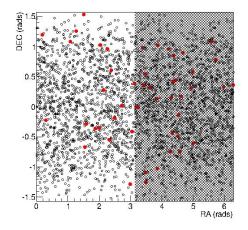
Cardiff University

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o oo ooooo	Next steps? 0000
Distribution of	pulsars			

Specific targets and sensitivity

Erin Macdonald

Background	Detection Criteria	Population Studies	Software injections and Mock Data Challenge	Next steps?
	00000			
			00000	
First tests of so	oftware injections			


First tests of software injections

- Colin Gill at Glasgow ran targeted search
- Vladimir Dergachev ran PowerFlux (all-sky search)
- Positive results showing that signals can be found

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge ○ ○○○ ○●○○○○	Next steps? 0000
First tests of so	oftware injections			

Challenge 1

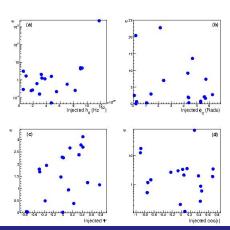
Erin Macdonald

Cardiff University

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge	Next steps? 0000
First tests of so	oftware iniections			

Glasgow targeted results

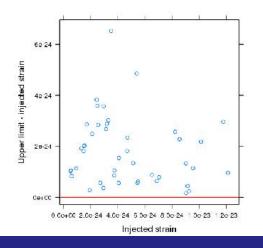
Cardiff University


Erin Macdonald

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge ○ ○○○ ○○○●	Next steps? 0000
Etan transfer				

First tests of software injections

Glasgow targeted results

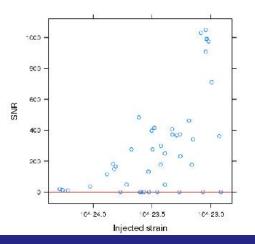


Cardiff University

Erin Macdonald

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge ○ ○○○ ○○○○	Next steps? 0000
First tests of so	oftware injections			

PowerFlux all-sky results



Erin Macdonald

Cardiff University

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge ○ ○○○ ○○○○	Next steps? 0000
First tests of so	oftware injections			

PowerFlux all-sky results

Erin Macdonald

Cardiff University

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps?
1 D	Packground			

1 Background

Gravitational Waves

2 Detection Criteria

- Current detection criteria
- Detection confidence over various scenarios
- Possible changes/additions for advanced era

3 Population Studies

Motion in the sky

4 Software injections and Mock Data Challenge

- Software injection challenge
- Distribution of pulsars
- First tests of software injections

5 Next steps?

Future Work

Erin Macdonald

Cardiff University

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge 0 000 000000	Next steps? ●000
Future Work				

Mock Data Challenge

- Challenge One and all the frames have been passed to group
- Individual processing has begun, some difficulties!
- Chairs have requested results by January 2013 from all pipelines on 49 sources

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? ○●○○
Future Work				

Expanding the data challenge

- Expand in steps to include all 3000 signals across frequency band
- Write a separate injection frame set with 1000 binary pulsars

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 00●0
Future Work				

- Use results from SW Challenge to assess criteria
- Prepare more thorough quantitative justification for criteria
- Propose changes with Advanced LIGO/Virgo in mind

Background 00000	Detection Criteria 00 00000 0	Population Studies	Software injections and Mock Data Challenge o ooo oooooo	Next steps? 000●
Future Work				

The End

Erin Macdonald

Continuous Waves with Advanced Detectors

Cardiff University