

Kentaro Takami

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut

Collaborator : Luciano Rezzolla

Gravitational Physics Seminars in Cardiff, 02 Nov 2012

The Basic Idea	Methodology	Results	Summary
Outline			

<ロト < 母ト < 臣ト < 臣ト 三日日 のへの 2/47

The Basic Idea

<ロト < @ ト < 臣 ト < 臣 ト 三 日 のへで 3/47

Black-hole Formation

- One of most interesting properties in classical general relativity is "black-hole formation".
- There are a lot of astronomical and numerical evidence that BHs exist.
- Theoretical and numerical works support that BHs are formed in a variety of environments.

e.g.,

- Gravitational collapse of unstable stars.
- Merger of binary neutron stars.
- We do not have a rigorous criterion for BH formation yet.
 - For example, we cannot predict whether/when the collision of two compact objects will lead to BH formation.

Black-hole Formation

Thorne's hoop conjecture

- Thorne provided us the intuitive *"hoop conjecture"*, which is a reasonable and the only guideline to produce a BH.
 - If mass/energy *E* is compressed within a hoop with radius R_{hoop} , a BH can be formed, where $R_{\text{hoop}} \leq R_{\text{s}} = 2GE/c^4$.
- However the Thorne's conjecture is not mathematically rigorous.
 - In fact, we do not know whether Thorne's conjecture can be used in the collision of two compact objects.
 - Difficult to determine the contribution of "kinetic energy" in a highly nonlinear process such as a collision.

Black-hole Formation in Head-on Collision

The process in cartoon.

6/47

Results

Black-hole Formation in Head-on Collision

Typical subcritical collision

The different panels show snapshots of the rest-mass density at representative times for a subcritical binary.

Note the metastable object in panels 2-5.

:া≡ ৩৭ে 7/47

Results

Summary

Black-hole Formation in Head-on Collision

Typical supercritical collision

The different panels show snapshots of the rest-mass density at representative times for a supercritical binary.

Note the metastable object in panels 2-5.

:l≡ ୬୍ର୍ଙ 8/47

Summary

Type-I Critical Behavior in Black-hole Formation

Type-I critical behavior in a head-on collision of compact stars was first pointed out by Jin et al.(2007).

Given a series of initial data parametrized by a scalar quantity P, the critical solution at P^* will separate two basins of attracting solutions.

Solutions near the critical one will survive on the critical manifold for a certain time before evolving towards the corresponding basin.

- $P > P^{\star} \Rightarrow$ black hole

- $P < P^{\star} \Rightarrow$ "star"

Results

10/47

Type-I Critical Behavior in Black-hole Formation

Work by Kellerman et al. (2010). 0.016 D 0.012 ρ 0.012 Ś م^ت 0.008 0.004 n t (ms) $\tau_{\rm eq}$ h = 0.08200 h = 0.1٧S 160 $\rho_{c} - \rho_{c}^{\star}|$ 120 80 40 -28 -24 $\ln |\rho_{e} - \rho_{e}'|$

Head-on collision of NSs with initial zero velocity at infinity, *i.e.*, $\gamma = 1$.

One parameter is central rest-mass density, *i.e.*, $P = \rho_c$.

-
$$\rho_{c} < \rho_{c}^{\star} \Rightarrow \text{ line C}$$
 : "star"

- $\rho_{c} > \rho_{c}^{\star} \Rightarrow \text{ line D : black hole}$

Survival time of metastable object which is "state B" depends on $|\rho_c - \rho_c^*|$:

(日) (周) (日) (日) (日)

$$au_{
m eq} \propto -\lambda \ln \left|
ho_{m{c}} -
ho_{m{c}}^{\star}
ight|
ight)$$

They showed $\lambda \sim 10$.

Black-hole Formation in Ultrarelativistic Collision

Ultrarelativistic collision of black-holes

- Penrose (1971)
 - head-on collision of two Aichelburg-SexI metrics, which is Schwarzschild metric in the limit of $\gamma_b \rightarrow \infty$.
 - upper bound of radiated energy is 29%.
- D'Eath (1978,1992)
 - head-on collision of two Aichelburg-SexI metrics.
 - radiated energy is \sim 16.4% by perturbative methods.
- Eardley et al. (2002)
 - collision of two Aichelburg-SexI metrics for general impact parameters.
 - cross-section for black hole production is $\sigma > 32.5(GE/2c^4)^2$.
- Sperhake et al. (2008,2009), Shibata et al. (2008) and so on.

Black-hole Formation in Ultrarelativistic Collision

First important work for non-black hole collisions

which was studied by Choptuik and Pretorius (2010). They considered the collision of two classical spherical solitons, *i.e.*, boson stars, with $E = 2\gamma_b m_0 c^2$, where $\gamma_b \equiv 1/\sqrt{1 - (\nu_b)^2}$.

Summary

Black-hole Formation in Ultrarelativistic Collision

First important work for non-black hole collisions

Black-hole Formation in Ultrarelativistic Collision

First important work for non-black hole collisions

They found that a BH can be formed by sufficiently high boost with $\gamma_b\gtrsim$ 2.9 .

Black-hole Formation in Ultrarelativistic Collision

Work by Choptuik and Pretorius (2010)

Choptuik and Pretorius studied the collision of two **classical spherical solitons** with ultrarelativistic speeds.

More realistic description of pure fluid matter.

Our work in this presentation

We study the collision of two **selfgravitating fluid objects** with ultrarelativistic speeds.

<ロ > < 圕 > < 臣 > < 臣 > 王 のへの 16/47

The Basic Idea	Methodology	Results	Summary

Numerical Method

⇒ All of our calculations have been performed in full general relativity with axisymmetric.

For "spacetime" part

- BSSNOK formalism (Nakamura et al. 1987, Shibata et al. 1995, Baumgarte et al. 1998)
 - "cartoon" method (Alcubierre et al. 2001)

For "fluid" part

- Whisky2D code (Kellerman et al. 2008)
 - 2D version of 3D Whisky code (Baiotti et al. 2005)
 - TVD with minmod limiter
 - Harten-Lax-van Leer-Einfeldt (HLLE) solver
 - 3rd-order Runge-Kutta scheme

Numerical Method

- Equation of state
 - ideal gas: $p = (\Gamma 1)\rho\varepsilon$ with $\Gamma = 2$
- Numerical grid structure
 - rectangular domain with $x/M_{\odot} \in [0, 80]$ and $z/M_{\odot} \in [0, 150(200)]$
 - uniform grid with $\Delta = 0.08(0.06)M_{\odot}$
- Boundary conditions
 - reflection boundary conditions on z = 0
 - radiative boundary conditions elsewhere

The Basic Idea	Methodology	Results	Summary

Initial Configuration

- Each object is TOV solution with polytropic equation of state, p = Kρ^Γ, e = ρ + ^p/_{Γ-1}, in the comoving frame, where K = 100 and Γ = 2.
- Each object is boosted against the center of masses frame via Lorentz transformation with v_b or $\gamma_b = (1 v_b^2)^{-1/2}$. $\Rightarrow g_{03} \neq 0, \ K_{ij} \neq 0$

The Basic Idea	Methodology	Results	Summary
Initial Configuration			

Non-zero metrics :

$$\begin{array}{rcl} g_{00} & = & \gamma_{\rm b}{}^2 \left(\bar{g}_{00} + \bar{g}_{33} \, v_{\rm b}{}^2 \right) \;, & g_{11} = \bar{g}_{11} \;, & g_{22} = \bar{g}_{22} \;, \\ g_{33} & = & \gamma_{\rm b}{}^2 \left(\bar{g}_{00} \, v_{\rm b}{}^2 + \bar{g}_{33} \right) \;, & g_{03} = -\gamma_{\rm b}{}^2 \left(\bar{g}_{00} + \bar{g}_{33} \right) v_{\rm b} \;. \end{array}$$

Non-zero extrinsic curvature :

$$\begin{split} \mathcal{K}_{xx} &= \frac{\gamma_{b}}{2\alpha} \left(\mathbf{v}_{b} + \beta^{z} \right) \frac{\partial \gamma_{xx}}{\partial \overline{z}} , \quad \mathcal{K}_{yy} = \frac{\gamma_{b}}{2\alpha} \left(\mathbf{v}_{b} + \beta^{z} \right) \frac{\partial \gamma_{yy}}{\partial \overline{z}} , \\ \mathcal{K}_{zz} &= \frac{\gamma_{b}}{2\alpha} \left[2\gamma_{zz} \frac{\partial \beta^{z}}{\partial \overline{z}} + \left(\mathbf{v}_{b} + \beta^{z} \right) \frac{\partial \gamma_{zz}}{\partial \overline{z}} \right] , \\ \mathcal{K}_{xz} &= \frac{\gamma_{zz}}{2\alpha} \frac{\partial \beta^{z}}{\partial \overline{x}} , \quad \mathcal{K}_{yz} = \frac{\gamma_{zz}}{2\alpha} \frac{\partial \beta^{z}}{\partial \overline{y}} , \end{split}$$

where "*bar*" quantities refer the metrics in the comoving frame, $\alpha = (-g^{00})^{-1/2}$ lapse function and $\beta_i = g_{0i}$ shift vector.

Fluid velocity :

$$v^{z} = rac{1}{lpha} \left(v_{\mathrm{b}} + eta^{z}
ight) \; .$$

20/47

Initial Configuration

 L_2 norm of Hamiltonian constraint violation in the initial data with single boosted neutron star.

Our boosting method slightly increases the violation, but it is sufficiently small at least within our boosting and mass range.

The Basic Idea	Methodology	Results	Summary
Initial Configuration			

Standard superposition method :

New method based on a post-Newton expansion

$$egin{array}{rcl} g_{00} &pprox & \left\{ egin{array}{ccc} -g_{00}^{(A)} imes g_{00}^{(B)} & (& ext{for } g_{00}^{(A)} < 0 ext{ and } g_{00}^{(B)} < 0 ext{ }) \ & ext{max}ig(\ g_{00}^{(A)} \ , \ g_{00}^{(B)} ig) & (& ext{otherwise } ig) \ & ext{,} \end{array}
ight. \ & g_{ij}^{(A)} imes g_{ij}^{(B)} & (& ext{for } i = j \) \ & g_{ij}^{(A)} + g_{ij}^{(B)} & (& ext{otherwise } ig) \end{array}
ight.
ight.$$

- This approximation has high-order correction terms related with Newtonian gravitational potential ϕ unless $g_{00}^{(A,B)} < 0$.
- It is equivalent to standard superposition method in the limit of weak gravitational field, $|\phi| \ll 1$.

Initial Configuration

Ratio of L_2 norm of Hamiltonian constraint violation in the initial data between "standard" superposition method and our "new" method.

- Violations are reduced about 20 \sim 50%.
- Improvement for large mass or boosting models is smaller than for another one, because of contribution of non-φ term.

- CTS approach provides similar improvements but much expensive (East et al. 2012).

23/47

How to measure the boost

- $\gamma_{\rm b}$ in the Lorentz transformation
 - meaningless for extended object in a general relativity.
- spatial average Lorentz factor : $\langle \tilde{\gamma} \rangle \equiv \frac{\int \gamma \, dV}{\int dV}$
- effective Lorentz factor : $\langle \gamma \rangle \equiv \frac{\int T_{\mu\nu} n^{\mu} n^{\nu} dV}{(\int T_{\mu\nu} n^{\mu} n^{\nu} dV)_{0}}$ where "0" refers to quantities measured in the initial unboosted frame.
 - analogy of $E = \gamma m$ in a special relativity

How to measure the boost

- $\gamma_{\rm b}$ in the Lorentz transformation
 - meaningless for extended object in a general relativity.
- spatial average Lorentz factor : $\langle \tilde{\gamma} \rangle \equiv \frac{\int \gamma \, dV}{\int dV}$
- effective Lorentz factor : $\langle \gamma \rangle \equiv \frac{\int T_{\mu\nu} n^{\mu} n^{\nu} dV}{(\int T_{\mu\nu} n^{\mu} n^{\nu} dV)_0}$ where "0" refers to quantities measured in the initial unboosted frame.
 - analogy of $E = \gamma m$ in a special relativity

averages grow less rapidly for increasing mass: curvature is important

<ロト < 部 ト < 王 ト 4 王 ト 三 日 の Q () 26/47

Results

Dynamics : mildly boosted case ($v_{\rm b}=0.3$)

Results

Summary

Dynamics : mildly boosted case ($v_b = 0.3$)

- matter with -u₀ > 1 is considered as unbound.
- unbound fraction is just a few percent of the total rest-mass.

□ › < @ › < 볼 › < 볼 › 볼 ⊨ 의 < ↔ 28/47

Results

Dynamics : highly boosted case ($v_{\rm b}=0.8$)

- spherical blast-wave expansion
- minimum density at the center.
- accelerating as large as $\gamma \sim$ 30.

29/47

Results

Dynamics : highly boosted case ($v_{\rm b}=0.8$)

- matter with $-u_0 > 1$ is unbound.
- unbound fraction is \sim 100% of the total rest-mass.
- the role played by gravitational forces is a minor one as the kinetic energy is increased.

The Basic Idea	Methodology	Results	Summary
Dvnamics			

MOVIE

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ④ Q @
 31/47

Results

t/M=297.55 t/M=353.46

Dynamics

continuous change of properties with increasing boost velocity.

We found type-I critical behaviour also for nonzero boosts.

 $\rho_c > \rho_c^{\star} \Rightarrow \text{ black hole,}$ $\rho_c < \rho_c^{\star} \Rightarrow \text{ stellar configuration,}$ where ρ_c^{\star} is critical value.

Survival time of metastable object : $\tau_{\rm eq} \propto -\lambda \ln |\rho_{\rm C} - \rho_{\rm C}^{\star}|$

Type-I Critical Behaviour

$\lambda \sim 10$

independent of the choice for the threshold value off the critical line.

↑

consistent with Jin et al.(2007) and Kellerman et al.(2010)

The Basic Idea	Methodology	Results	Summary
Type-I Critical Behavi	our		

Instead of ρ_c , we can also choose γ_b (or v_b) as one parameter of solutions for a fixed ρ_c .

The critical exponent is still keeping $\lambda \sim 10$.

Jin et al.(2007) call this "universality".

Critical Line to Collapse to BH

For effective Lorentz factor $\langle \gamma \rangle$,

<ロ></i>< 合>< 合>< 合>< 合>< 合>< 合>< 合>< 合>< の<()36/47

Critical Line to Collapse to BH

37/47

Critical Line to Collapse to BH

Critical Line to Collapse to BH

In qualitative agreement with East and Pretorius(2012), who considered fixed restmass models.

Total energy to produce BH is conserved in ultrarelativistic collision.

 $\langle \gamma \rangle M_{\rm c} \approx \text{const.}$

39/47

Critical Line to Collapse to BH

For effective Lorentz factor $\langle \gamma \rangle$, black hole ''star'' -0.2black holes $\log_{10}(M/M_{\odot})$ stars' 0.4 -0.60.1 0.5 0 0.2 0.3 0.4 0.6 $\log_{10} \langle \gamma \rangle$ $\frac{M_{\rm c}}{M_{\odot}} = K \langle \gamma \rangle^{-n} \approx 0.93 \langle \gamma \rangle^{-1.0}$

• $\langle \gamma \rangle \rightarrow \mathbf{1}$:

-
$$M_{
m c}
ightarrow 0.93~M_{\odot}.$$

- $2M_c$ is only $\sim 12\%$ larger than $M_{max} = 1.64M_{\odot}$ in TOV.

•
$$\langle \gamma \rangle \to \infty$$
 :

- $M_{
 m c}
 ightarrow 0.$
- producing zero-mass critical BH.
- predicting the existence of type-II critical behavior $(M_{\rm BH} = c|P - P^{\star}|^{\lambda}).$

イロト 不得 トイヨト イヨト 正言 ろくの

Critical Line to Collapse to BH

Using compactness M/R, instead of M:

$$rac{M_{
m c}}{R_{
m c}} = K \langle \gamma
angle^{-m}$$
 $pprox 0.084 \langle \gamma
angle^{-1.1}$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三日日 のへで 41/47

Critical Line to Collapse to BH

Results

Proton-Proton Collision Case

- Our simulations do not want to represent particle collisions, but we can check where LHC regimes lay in this diagram.
- We extrapolate our critical line in very wide range.
- We neglect quantum effects and extra-dimension effects that might be important at Planck-energy scales.

Proton-Proton Collision Case

- Our simulations do not want to represent particle collisions, but we can check where LHC regimes lay in this diagram.
- We extrapolate our critical line in very wide range.
- We neglect quantum effects and extra-dimension effects that might be important at Planck-energy scales.

Summary

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

The Basic Idea	Methodology	Results	Summary
Summary			

- We studied the collision of two selfgravitating fluid objects with ultrarelativistic speeds.
- We found the dynamics strongly depends on the collisional velocities:
 - Expansion types continuously change from jet-like to spherical blast-wave with $\gamma_{\rm b}$.
 - Fraction of unbound matter becomes \sim 100% in large γ_b .
- We found type-I critical behavior for all γ_b:
 - $au_{
 m eq} \propto -\lambda \ln |
 ho_c
 ho_c^{\star}|$ with $\lambda \sim 10$.
 - "universality" : $au_{
 m eq} \propto -\lambda \ln |\gamma_{
 m b} \gamma_{
 m b}^{\star}|$ with $\lambda \sim$ 10
- We found the critical line with a power law:

- $\frac{M_c}{M_{\odot}} = K \langle \gamma \rangle^{-n}$ with $K \approx 0.93$ and $n \approx 1.0$.

 Our results show proton-proton collisions in LHC and UHECR are unlikely to produce BHs within classical general relativity.