# Testing Gravity with Cosmology (a new Golden Age?)

Pedro Ferreira Oxford

#### The Large Scale Structure of the Universe

SDSS







"The elegant logic of general relativity theory, and its precision tests, recommend GR as the first choice for a working model for cosmology. But the Hubble length is fifteen orders of magnitude larger than the length scale of the precision tests, at the astronomical unit and smaller, a spectacular extrapolation."

Jim Peebles, IAU 2000



#### The Angular Power Spectrum of the CMB



# Outline

- The panorama of gravitation
- Cosmological linear perturbations
- How to parametrize the space of theories
- How to measure the parameters
- The future

#### Einstein Gravity



Lovelock's theorem (1971) :"The only second-order, local gravitational field equations derivable from an action containing solely the 4D metric tensor (plus related tensors) are the Einstein field equations with a cosmological constant."

9



**Linear Perturbation Theory**  $(10 - 10,000h^{-1}Mpc)$ 

$$\begin{split} & (\hat{\Phi}, \hat{\Psi}) \qquad \delta G_{\alpha\beta} = 8\pi G \delta T_{\alpha\beta} + \text{E.M. Conservation} \\ & \text{Gauge invariant} \\ & \text{Newtonian potentials} \\ & \hat{\Gamma} = \frac{1}{k} \left( \dot{\hat{\Phi}} + \mathcal{H} \hat{\Psi} \right) \\ & E_{\Delta} = 2(\vec{\nabla}^2 + 3K) \hat{\Phi} - 6\mathcal{H}k\hat{\Gamma} - \frac{3}{2}\mathcal{H}EV = 8\pi Ga^2 \sum_i \rho_i \delta_i \cdot E_{\Theta} = 2k\hat{\Gamma} + \frac{1}{2}EV = 8\pi Ga^2 \sum_i (\rho_i + P_i)\theta_i \\ & E_{\Theta} = 2k\hat{\Gamma} + \frac{1}{2}EV = 8\pi Ga^2 \sum_i (\rho_i + P_i)\theta_i \\ & E_P = 6k\frac{d\hat{\Gamma}}{d\tau} + 12\mathcal{H}k\hat{\Gamma} - 2(\vec{\nabla}^2 + 3K)(\hat{\Phi} - \hat{\Psi}) \\ & -3E\hat{\Psi} + \frac{3}{2} \left( \dot{E}_R - 2\mathcal{H}E_R \right) V = 24\pi Ga^2 \sum_i \rho_i \Pi_i \\ & E_{\Sigma} = \hat{\Phi} - \hat{\Psi} = 8\pi Ga^2 \sum_i (\rho_i + P_i)\Sigma_i \\ & \text{In fact- construct an algebraic equation: } (\nabla^2 + K)\hat{\Phi} = 4\pi Ga^2 \sum_i \rho_i \Delta_i \end{split}$$

### Simplest Approach

Poisson 
$$-k^2 \Phi = 4\pi G a^2 \rho \Delta$$
  $(E_\Delta - 3\mathcal{H} E_\Theta)$   
Slip  $\Phi - \Psi = 0$   $(E_\Sigma)$ 

Zhang, Liguori, Bean and Dodelson Caldwell, Cooray and Melchiorri Amendola, Kunz and Sapone Bertschinger and Zukin Amin, Blandford and Wagoner Pogosian, Silvestri, Koyama and Zhao Bean and Tangmatitham

$$-k^2 \Phi = 4\pi G a^2 G a^2 \rho \Delta + F_1$$
$$\Phi - \Psi = F_2$$

$$F_1 = k^2 f_1 \Phi$$
$$F_2 = f_2 \Phi$$

Rearrange and rename:

$$-k^2\Phi = 4\pi G\mu a^2\rho\Delta$$

 $\Psi = \gamma \Phi$ 

$$-k^2(\Phi + \Psi) = 8\pi G \Sigma a^2 \rho \Delta$$

### Simplest Approach

Poisson 
$$-k^2 \Phi = 4\pi G a^2 \rho \Delta$$
  $(E_\Delta - 3\mathcal{H}E_\Theta)$   
Slip  $\Phi - \Psi = 0$   $(E_\Sigma)$ 

$$-k^2 \Phi = 4\pi G a^2 G a^2 \rho \Delta + F_1$$
$$\Phi - \Psi = F_2$$

Rearrange and rename:

$$-k^2\Phi = 4\pi G\mu a^2\rho\Delta$$

 $\Psi = \gamma \Phi$ 

• There are a few variants, e.g.

$$F_1 = k^2 f_1 \Phi$$
$$F_2 = f_2 \Phi$$

Each function must be constrained on a grid of (a,k) using Principal Component Analysis .

$$-k^2(\Phi + \Psi) = 8\pi G \Sigma a^2 \rho \Delta$$

### Lessons from PPN

|                                          | Y                                | β               | ξ | <b>a</b> 1 | CI 2           | CI3      | ζ1 | ζ2 | ζ3 | ζ4 |
|------------------------------------------|----------------------------------|-----------------|---|------------|----------------|----------|----|----|----|----|
| Einstein (1916) GR                       | 1                                | 1               | 0 | 0          | 0              | 0        | 0  | 0  | 0  | 0  |
| Bergmann (1968), Wagoner (1970)          |                                  | β               | 0 | 0          | 0              | 0        | 0  | 0  | 0  | 0  |
| Nordtvedt (1970), Bekenstein (1977)      |                                  | β               | 0 | 0          | 0              | 0        | 0  | 0  | 0  | 0  |
| Brans-Dicke (1961)                       |                                  | 1               | 0 | 0          | 0              | 0        | 0  | 0  | 0  | 0  |
| Hellings-Nordtvedt (1973)                | γ                                | β               | 0 | α1         | a <sub>2</sub> | 0        | 0  | 0  | 0  | 0  |
| Will-Nordtvedt (1972)                    | 1                                | 1               | 0 | 0          | <b>Q</b> 2     | 0        | 0  | 0  | 0  | 0  |
| Rosen (1975)                             | 1                                | 1               | 0 | 0          | C₀/ C₁ − 1     | 0        | 0  | 0  | 0  | 0  |
| Rastall (1979)                           | 1                                | 1               | 0 | 0          | α2             | 0        | 0  | 0  | 0  | 0  |
| Lightman-Lee (1973)                      | γ                                | β               | 0 | <b>Q</b> 1 | α2             | 0        | 0  | 0  | 0  | 0  |
| Lee-Lightman-Ni (1974)                   | ac <sub>0</sub> / c <sub>1</sub> | β               | ξ | Q1         | α2             | 0        | 0  | 0  | 0  | 0  |
| Ni (1973)                                | ac <sub>0</sub> / c <sub>1</sub> | bc <sub>0</sub> | 0 | α1         | α2             | 0        | 0  | 0  | 0  | 0  |
| Einstein (1912) {Not GR}                 | 0                                | 0               | 0 | -4         | 0              | -2       | 0  | -1 | 0  | 0  |
| Whitrow-Morduch (1965)                   | 0                                | -1              | 0 | -4         | 0              | 0        | 0  | -3 | 0  | 0  |
| Rosen (1971)                             | λ                                |                 | 0 | - 4 - 4λ   | 0              | -4       | 0  | -1 | 0  | 0  |
| Papetrou (1954a, 1954b)                  | 1                                | 1               | 0 | -8         | -4             | 0        | 0  | 2  | 0  | 0  |
| Ni (1972) (stratified)                   | 1                                | 1               | 0 | -8         | 0              | 0        | 0  | 2  | 0  | 0  |
| Yilmaz (1958, 1962)                      | 1                                | 1               | 0 | -8         | 0              | -4       | 0  | -2 | 0  | -1 |
| Page-Tupper (1968)                       | γ                                | β               | 0 | – 4 – 4y   | 0              | – 2 – 2y | 0  | ζ2 | 0  | ζ4 |
| Nordström (1912)                         | -1                               | β               | 0 | 0          | 0              | 0        | 0  | 0  | 0  | 0  |
| Nordström (1913), Einstein-Fokker (1914) | -1                               | 1               | 0 | 0          | 0              | 0        | 0  | 0  | 0  | 0  |
| Ni (1972) (flat)                         | -1                               | 1 – q           | 0 | 0          | 0              | 0        | 0  | ζ2 | 0  | 0  |
| Whitrow-Morduch (1960)                   | -1                               | 1 – q           | 0 | 0          | 0              | 0        | 0  | q  | 0  | 0  |
| Littlewood (1953), Bergman(1956)         | -1                               | β               | 0 | 0          | 0              | 0        | 0  | -1 | 0  | 0  |

Scalar-Tensor

Bimetric

Scalar Field Theories

Vector-Tensor

Stratified

### Lessons from PPN



### Extending Einstein's equations

$$\delta G_{\mu\nu} = 8\pi G_N \delta T^M_{\mu\nu} + \delta U_{\mu\nu} - ?$$



$$\delta(\nabla^{\mu}G_{\mu\nu}) = 0 \to \delta(\nabla^{\mu}U_{\mu\nu}) = 0$$

#### ArXiv:1209.2117

### Adding New Scalars

$$\begin{aligned} -a^{2}\delta U_{0}^{0} &= U_{\Delta} = A_{0}k^{2}\hat{\Phi} + F_{0}k^{2}\hat{\Gamma} + \alpha_{0}k^{2}\hat{\chi} + \alpha_{1}k\dot{\hat{\chi}} + M_{\Delta}k^{3}V \\ U_{\Theta} &= B_{0}k\hat{\Phi} + I_{0}k\hat{\Gamma} + \beta_{0}k\hat{\chi} + \beta_{1}\dot{\hat{\chi}} + M_{\Theta}k^{2}V \\ a^{2}\delta U_{i}^{i} &= U_{P} = C_{0}k^{2}\hat{\Phi} + C_{1}k\dot{\hat{\Phi}} + J_{0}k^{2}\hat{\Gamma} + J_{1}k\dot{\hat{\Gamma}} \\ &+ \gamma_{0}k^{2}\hat{\chi} + \gamma_{1}k\dot{\hat{\chi}} + \gamma_{2}\ddot{\chi} + M_{P}k^{3}V \\ U_{\Sigma} &= D_{0}\hat{\Phi} + \frac{D_{1}}{k}\dot{\hat{\Phi}} + K_{0}\hat{\Gamma} + \frac{K_{1}}{k}\dot{\hat{\Gamma}} \\ &+ \epsilon_{0}\hat{\chi} + \frac{\epsilon_{1}}{k}\dot{\hat{\chi}} + \frac{\epsilon_{2}}{k^{2}}\ddot{\hat{\chi}} \end{aligned}$$

Gauge form-fixing term, zero in CN gauge.

**ArXiv: 1209.2117** 
$$\nabla_i U_{\Theta} = -a^2 \delta U_i^0, \quad \left(\nabla^i \nabla_j - \frac{1}{3} \delta_j^i \nabla^2\right) U_{\Sigma} = a^2 \delta U_j^i$$

$$\begin{aligned} & \mathsf{Adding New Scalars} \\ -a^2 \delta U_0^0 = U_\Delta = A_0 k^2 \hat{\Phi} + F_0 k^2 \hat{\Gamma} + \alpha_0 k^2 \hat{\chi} + \alpha_1 k \dot{\hat{\chi}} + M_\Delta k^3 V \\ & U_\Theta = B_0 k \hat{\Phi} + I_0 k \hat{\Gamma} + \beta_0 k \hat{\chi} + \beta_1 \dot{\hat{\chi}} + M_\Theta k^2 V \\ & a^2 \delta U_i^i = U_P = C_0 k^2 \hat{\Phi} + C_1 k \dot{\hat{\Phi}} + J_0 k^2 \hat{\Gamma} + J_1 k \dot{\hat{\Gamma}} \\ & + \gamma_0 k^2 \hat{\chi} + \gamma_1 k \dot{\hat{\chi}} + \gamma_2 \ddot{\hat{\chi}} + M_P k^3 V \\ & U_\Sigma = D_0 \hat{\Phi} + \frac{D_1}{k} \dot{\hat{\Phi}} + K_0 \hat{\Gamma} + \frac{K_1}{k} \dot{\hat{\Gamma}} \\ & + \epsilon_0 \hat{\chi} + \frac{\epsilon_1}{k} \dot{\hat{\chi}} + \frac{\epsilon_2}{k^2} \ddot{\hat{\chi}} \end{aligned}$$

Gauge form-fixing term, zero in CN gauge.

**ArXiv: 1209.2117** 
$$\nabla_i U_{\Theta} = -a^2 \delta U_i^0, \quad \left(\nabla^i \nabla_j - \frac{1}{3} \delta_j^i \nabla^2\right) U_{\Sigma} = a^2 \delta U_j^i$$

$$\begin{aligned} & \textbf{Adding New Scalars} \\ -a^2 \delta U_0^0 = U_\Delta = A_0 k^2 \hat{\Phi} + F_0 k^2 \hat{\Gamma} + \alpha_0 k^2 \hat{\chi} + \alpha_1 k \dot{\hat{\chi}} + M_\Delta k^3 V \\ & U_\Theta = B_0 k \hat{\Phi} + I_0 k \hat{\Gamma} + \beta_0 k \hat{\chi} + \beta_1 \dot{\hat{\chi}} + M_\Theta k^2 V \\ a^2 \delta U_i^i = U_P = C_0 k^2 \hat{\Phi} + C_1 k \dot{\hat{\Phi}} + J_0 k^2 \hat{\Gamma} + J_1 k \dot{\hat{\Gamma}} \\ & + \gamma_0 k^2 \hat{\chi} + \gamma_1 k \dot{\hat{\chi}} + \gamma_2 \ddot{\hat{\chi}} + M_P k^3 V \\ & U_\Sigma = D_0 \hat{\Phi} + \frac{D_1}{k} \dot{\hat{\Phi}} + K_0 \hat{\Gamma} + \frac{K_1}{k} \dot{\hat{\Gamma}} \\ & + \epsilon_0 \hat{\chi} + \frac{\epsilon_1}{k} \dot{\hat{\chi}} + \frac{\epsilon_2}{k^2} \ddot{\hat{\chi}} \end{aligned}$$

Gauge form-fixing term, zero in CN gauge.

**ArXiv: 1209.2117** 
$$\nabla_i U_{\Theta} = -a^2 \delta U_i^0, \quad \left(\nabla^i \nabla_j - \frac{1}{3} \delta_j^i \nabla^2\right) U_{\Sigma} = a^2 \delta U_j^i$$

16

### Adding New Scalars

 $-a^{2}\delta U_{0}^{0} = U_{\Delta} = A_{0}k^{2}\hat{\Phi} + F_{0}k^{2}\hat{\Gamma} + \alpha_{0}k^{2}\hat{\chi} + \alpha_{1}k\dot{\hat{\chi}} + M_{\Delta}k^{3}V$  $U_{\Theta} = B_0 k \hat{\Phi} + I_0 k \hat{\Gamma} + \beta_0 k \hat{\chi} + \beta_1 \dot{\hat{\chi}} + M_{\Theta} k^2 V$  $a^{2}\delta U_{i}^{i} = U_{P} = C_{0}k^{2}\hat{\Phi} + C_{1}k\hat{\Phi} + J_{0}k^{2}\hat{\Gamma} + J_{1}k\hat{\Gamma}$  $+ \gamma_0 k^2 \hat{\chi} + \gamma_1 k \dot{\hat{\chi}} + \gamma_2 \ddot{\hat{\chi}} + M_P k^3 V$  $U_{\Sigma} = D_0 \hat{\Phi} + \frac{D_1}{\iota} \dot{\hat{\Phi}} + K_0 \hat{\Gamma} + \frac{K_1}{\iota} \dot{\hat{\Gamma}}$  $+ \epsilon_0 \hat{\chi} + \frac{\epsilon_1}{\iota} \dot{\hat{\chi}} + \frac{\epsilon_2}{\iota^2} \ddot{\hat{\chi}}$ 

#### ArXiv:1209.2117

$$\begin{aligned} & \mathsf{Adding New Scalars} \\ -a^2 \delta U_0^0 = U_\Delta = A_0 k^2 \hat{\Phi} + F_0 k^2 \hat{\Gamma} + \alpha_0 k^2 \hat{\chi} + \alpha_1 k \dot{\hat{\chi}} + M_\Delta k^3 V \\ & U_\Theta = B_0 k \hat{\Phi} + I_0 k \hat{\Gamma} + \beta_0 k \hat{\chi} + \beta_1 \dot{\hat{\chi}} + M_\Theta k^2 V \\ & a^2 \delta U_i^i = U_P = C_0 k^2 \hat{\Phi} + C_1 k \dot{\hat{\Phi}} + J_0 k^2 \hat{\Gamma} + J_1 k \dot{\hat{\Gamma}} \\ & + \gamma_0 k^2 \hat{\chi} + \gamma_1 k \dot{\hat{\chi}} + \gamma_2 \ddot{\chi} + M_P k^3 V \\ & U_\Sigma = D_0 \hat{\Phi} + \frac{D_1}{k} \dot{\hat{\Phi}} + K_0 \hat{\Gamma} + \frac{K_1}{k} \dot{\hat{\Gamma}} \\ & + \epsilon_0 \hat{\chi} + \frac{\epsilon_1}{k} \dot{\hat{\chi}} + \frac{\epsilon_2}{k^2} \ddot{\hat{\chi}} \end{aligned}$$

#### ArXiv:1209.2117

| Category                     | Theory                      |  |  |  |  |  |
|------------------------------|-----------------------------|--|--|--|--|--|
|                              | Scalar-Tensor theory        |  |  |  |  |  |
|                              | (incl. Brans-Dicke)         |  |  |  |  |  |
|                              | f(R) gravity                |  |  |  |  |  |
| Horndeski Theories           | $f(\mathcal{G})$ theories   |  |  |  |  |  |
|                              | Covariant Galileons         |  |  |  |  |  |
|                              | The Fab Four                |  |  |  |  |  |
|                              | K-inflation                 |  |  |  |  |  |
|                              | Generalized G-inflation     |  |  |  |  |  |
|                              | Kinetic Gravity Braiding    |  |  |  |  |  |
|                              | Quintessence (incl.         |  |  |  |  |  |
|                              | universally coupled models) |  |  |  |  |  |
|                              | Effective dark fluid        |  |  |  |  |  |
| Lorontz Violating theories   | Einstein-Aether theory      |  |  |  |  |  |
| Lorentz- v lorating theories | Hořava-Lifschitz theory     |  |  |  |  |  |
|                              | DGP (4D effective theory)   |  |  |  |  |  |
| > 2 new degrees of freedom   | EBI gravity                 |  |  |  |  |  |
|                              | TeVeS                       |  |  |  |  |  |

#### ArXiv:1209.2117

... and more to come.



### What about the non-linear regime? $R \simeq 0.1 - 10h^{-1}Mpc$



#### The Bullet Cluster



Clowe et al 2006

#### What about the non-linear regime? $R \simeq 0.1 - 10h^{-1}Mpc$



Schmidt 2009

### Observables: Light vs. Matter

• For a perturbed line element of the form:

$$ds^{2} = a^{2}(\tau) \left[ -(1+2\Phi)d\tau^{2} + (1-2\Psi)\gamma_{ij}dx^{i}dx^{j} \right]$$

the equations of motion are:



### Growth of Structure

• Evolution of CDM energy density perturbations:

$$\ddot{\delta}_M + \mathcal{H}\dot{\delta}_M - 3\ddot{\Phi} - 3\mathcal{H}\dot{\Phi} + k^2\Psi = 0$$

The growth rate of structure is quantified via *f*:

$$f(k,a) = \frac{d\ln\delta_M(k,a)}{d\ln a}$$

• In GR  $\delta_M \propto$  a during matter domination, so f = I(independent of k for linear scales).



### Growth of Structure

• Evolution of CDM energy density perturbations:



#### **Redshift Space Distortions**





#### Ultra-large scale surveys



#### Radio surveys and total intensity mapping



#### The Angular Power Spectrum of the CMB





ISW- late time effects on large scales

$$\propto \int (\dot{\Phi} + \dot{\Psi}) d\eta$$

Weak lensing on small scales

$$\propto \int (\Phi + \Psi) d\eta$$



#### Weak Lensing: state of play



#### CMB circa 1995



Scott 1995

#### Cross correlating data sets



### **Constraints on** F(R) = 1 + f(R)



## Model Independent Constraints



#### ... are not that independent.

## Model Independent Constraints



Zhao et al 2011

# Dependent on parametrization and combination of data sets.

#### The State of Play



### The Future

Soon: ground-based galaxy weak lensing.







The future? The Square Kilometer Array (2020 onwards). An almighty survey of radio galaxies to high  $z \Rightarrow RSDs$ ,

peculiar velocities, BAO; also continuum mapping.





#### The Future





38

# Summary

- The large scale structure of the Universe can be used to test gravity.
- There is a immense landscape of gravitational theories.
- We need a unified framework- "PPF"- for constraining such theories.
- We need to focus on linear scales (for now) although non-linear scales can be incredibly powerful.
- Signatures on large scales and growth rate.
- There are a plethora of new experiments to look forward to.

# Collaborators

- Tessa Baker (Oxford)
- Tim Clifton (QMW)
- Tony Padilla (Nottingham)
- Constantinos Skordis (Nottingham)
- Mario Santos (IST/Lisbon)
- Joseph Zuntz (Oxford/UCL)