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Compact Binaries
Coalescence of black holes and neutron stars 
in binaries are the primary candidate for 
ground-based GW detectors.

Astrophysical event rates uncertain:

NS-NS: 0.01 - 10 / (Mpc3Myr)

NS-BH: 4x10-4 - 1 / (Mpc3Myr) (theoretical)

BH-BH: 1x10-4 - 0.3 /(Mpc3Myr) (theoretical)
[Abadie et al Class. Quant. Grav 27 172001 ]

Translated to BNS detections:

Early (2015): 0.0004 - 3

Mid (2016-2017): 0.006 - 20

Late (2017-2018): 0.04 - 100

Final: 0.2 - 200
[ LIGO-DCC P1200087 ] 3

1.4 M� neutron stars gives a matched filter signal-to-noise ratio of 8 in a single detector [6]1. The
BNS ranges for the various stages of aLIGO and AdV expected evolution are also provided in Fig. 1.
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Figure 1: aLIGO (left) and AdV (right) target strain sensitivity as a function of frequency. The
average distance to which binary neutron star (BNS) signals could be seen is given in Mpc. Current
notions of the progression of sensitivity are given for early, middle, and late commissioning phases,
as well as the final design sensitivity target and the BNS-optimized sensitivity. While both dates
and sensitivity curves are subject to change, the overall progression represents our best current
estimates.

The installation of aLIGO is well underway. The plan calls for three identical 4 km interfer-
ometers, referred to as H1, H2, and L1. In 2011, the LIGO Lab and IndIGO consortium in India
proposed installing one of the aLIGO Hanford detectors, H2, at a new observatory in India (LIGO-
India). As of early 2013 LIGO Laboratory has begun preparing the H2 interferometer for shipment
to India. Funding for the Indian portion of LIGO-India is in the final stages of consideration by
the Indian government.

The first aLIGO science run is expected in 2015. It will be of order three months in duration,
and will involve the H1 and L1 detectors (assuming H2 is placed in storage for LIGO-India). The
detectors will not be at full design sensitivity; we anticipate a possible BNS range of 40 – 80 Mpc.
Subsequent science runs will have increasing duration and sensitivity. We aim for a BNS range
of 80 – 170Mpc over 2016-18, with science runs of several months. Assuming that no unexpected
obstacles are encountered, the aLIGO detectors are expected to achieve a 200 Mpc BNS range
circa 2019. After the first observing runs, circa 2020, it may be possible to optimize the detector
sensitivity for a specific class of astrophysical signals, such as BNSs. The BNS range may then
become 215 Mpc. The sensitivity for each of these stages is shown in Fig. 1.

Because of the planning for the installation of one of the LIGO detectors in India, the installation
of the H2 detector has been deferred. This detector will be reconfigured to be identical to H1 and
L1 and will be installed in India once the LIGO-India Observatory is complete. The final schedule
will be adopted once final funding approvals are granted. It is expect that the site development

1
Another often quoted number is the BNS horizon—the distance at which an optimally oriented and located

BNS system would be observed with a signal to noise ratio of 8. The BNS horizon is a factor of 2.26 larger than the

BNS range.

3

BNS @ 150Mpc

BBH @ 400Mpc

Beyond confirming the 
existence of gravitational 
waves, what can they tell us 
about astrophysics?
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What parameters?

What parameters are there are to measure for an individual source?

• The simplest model of a compact binary in a circular orbit has 9 
parameters

• Add spins for another six

• and neutron stars have equation of state parameters

• Then there are possible deviations from the GR model...

4

2 masses, time, sky position, distance, 3 orientation angles

2 magnitudes, 4 orientation angles

Tidal deformability of each star λ1, λ2
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Model gravitational wave
The response of a given detector to an incoming CBC signal is a complicated function of the 
physical parameters:

Can categorise them as instrinsic: 

and extrinsic

(assuming we know the position and orientation of the detectors)
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Noisy detectors
Unfortunately signal is buried in additive noise from the detector:

Must also model the noise!

6

di(t) = hi(t) + ni(t)
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Noise model
Simplest noise model makes few assumptions:

zero mean: <ni>=0

known variance: <ni2> = Sh(fi) Δf = σi2

Maximum entropy distribution is Gaussian, i.e.

Assuming independence in each frequency bin:

And independence in each detector:

Terminology: the “likelihood” of the noise
7
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Likelihood function
For additive noise, di=hi+ni, the mean of the data distribution becomes the prediction of the 
signal model for given parameters θ:  <di> = h(fi,θ), whereas variance remains the same.

Putting everything together, we have a model of the data containing an unknown signal and 
noise, and can write the joint distribution of all quantities as

If we then observe a specific set of data, we can infer the parameters of the signal by calculating 
the posterior probability distribution (PDF):

where                                                                                       is the evidence of the model.

8

p(~d, ~✓|~�, HS) = p(~d|~✓,~�, HS)p(~✓|~�, HS)

= p(~✓|~d,~�, HS)p(~d|~�, HS)

p(~✓|~d,~�, HS) = p(~✓|~d,~�,HS)p(~d|~�,HS)

p(~d|~�,HS)

p(~d|~�, HS) =

Z

~✓2⇥
d~✓p(~d|~✓,~�, HS)p(~✓|~�, HS)
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Model Selection
In detector data we do now know if a signal is present or not, so we can compute the relative 
probability of the signal and null (noise) hypotheses - “odds ratio”

9

p(HS |~d)
p(HN |~d)

=
p(HS)

p(HN )

p(~d|HS)

p(~d|HN )

Note: search pipelines exclude background, calculating 1/p(d|HN) ~ “inverse false alarm 
probability”.

Incoherent search pipelines matched filter each detector independently: valid given the 
independence of noise in each detector.

Information about the signal (priors, coincidence in time, parameter consistency between 
detectors, multi-detector coherence...) belongs on the numerator.

Can also compute odds between different models to compare theories of gravity, neutron star 
equations of state, etc.
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Calculating posteriors
Nothing so far is specific to searching or parameter estimation.

But, the waveform model of a CBC signal in a given detector depends 
on 9 or more physical parameters,

and the likelihood function is:

• non-linear: difficult to find maximum

• non-invertible: multiple maxima

To fully search this space need >230 templates. This is impractical, so 
what to do?

• Search codes: Maximise! Reduce dimensionality by eliminating 
extrinsic parameters

• Parameter estimation codes: Sample posterior PDF
10

�⌅ = {M, ⇤, tc,⌃c, dL,�, ⇥, ⇧,⌥, . . .}
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Marginalisation

11

p(�1|H, I) =

Z
p(⇥�|H, I)d�2 . . . d�N

Eliminate nuisance 
parameters by integrating out

Can be done easily with 
collection of posterior 
samples by producing 
histograms for the 
parameters of interest. 
Can use 2D histograms 
to see correlations, etc
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Nested Sampling
Nested sampling [Skilling 2004] is designed 
to calculate the evidence integral 
probabilistically using random samples

We know from product rule that 

Define 

as the prior mass enclosed by a contour of 
equal likelihood λ.

X is a monotonic function of λ between λmin 
and λmax, the likelihood range.

So we can also write 

Key idea: remap the N-dimensional integral 
over θ to a 1-D integral over X.

Each nested contour shrinks by (N-1) / N 
times. Choose X(λ) by randomly sampling N 
“live” points.

12

Z = p(~d|~�, HS) =

Z

~✓2⇥
d~✓p(~d|~✓,~�, HS)p(~✓|~�, HS)

p(~d|~✓, HS)p(~✓|HS) = Zp(~✓|d,HS)

X(�) =

Z

L(~✓)>�
p(~✓|HS)d~✓

Z =

Z 1

0
L(X)dX

7

FIG. 1: Each sample in the basket of live points can be
thought of as lying on a contour line of equal likelihood value.
Figure reproduced from [21].

points would be needed to avoid the possibility of missing
the maximum of the likelihood function using a regular
grid. In the case of a compact binary in-spiral signal
as observed in a network of ground-based interferome-
ters and using the parameterisation given in section II C,
H ! 20 nats. If a regular grid of points was used (assum-
ing a uniform prior), finding the weights associated with
each point wi = 1/N would be simple, but the number of
samples needed, N becomes prohibitively large. The key
concept on which the nested sampling algorithm rests is
the means to calculate the wi of stochastically sampled
points. By evolving the collection of N points to higher
likelihood areas of parameter space, the algorithm simul-
taneously searches for the peaks of the distribution and
accumulates the evidence integral as it progresses.
In order to find the weights associated with each point

!θi, it is useful to think of each point as lying on a (not
necessarily closed) contour surface of equal likelihood in
the parameter space. The prior mass – that is the frac-
tion of the total prior volume – enclosed by the i-th con-
tour surface is denoted Xi, with the lowest likelihood
contour line enclosing the largest volume and the maxi-
mum likelihood point enclosing the smallest. With this
definition, X0 = 1. We can then think of a mapping be-
tween the contour lines in physical parameter space and
the fractions of the prior Xi, where the likelihood L(X)
increases toward smaller values of X , as shown in figure
1, and ∆Xi = Xi+1 −Xi. The evidence, Eq. (4) or (25)
can then be expressed as the one-dimensional integral

Z =

∫

L(X)dX ≈
∑

i

L(Xi)∆Xi . (28)

As the inverse mapping !θ(X) is not known, the analyti-
cal integral cannot be performed. However, as we know
that the prior distribution is normalised to unity, the
unknown prior mass enclosed by the outermost contour
throughX1 has a probability distribution P (X1) which is
equal to the distribution of a new variable t1 ∈ [0, 1], the
maximum of N random numbers drawn from the uniform
distribution U(0, 1). If we then replace the first point
with a new point sampled from the prior distribution

limited to the volume lying at higher likelihood than L1,
X(L > L1), we can repeat the process so that X2 = t2X1

andXi = tiXi−1, where by definition ti ≡ Xi/Xi−1 is the
shrinkage ratio. The probability of ti is P (ti) = NtN−1

i ,
where ti is the largest of N random numbers drawn from
U(0, 1). The volume enclosed at each iteration therefore
shrinks geometrically, ensuring the speedy convergence
of the integral. The mean decrease in the volume at each
iteration is

E [log t] =

∫ 1

0
log (t) p(t) dt = −N−1 , (29)

and an estimate of the statistical variance introduced by
this process is

∫ 1

0
(log t− E [log t])2 p(t) dt = N−2 . (30)

The distribution of t can also be sampled by generating
the N uniform random numbers and creating many reali-
sations of the ts for each iteration in the algorithm. In our
testing with this procedure, it was found that for a rea-
sonable number of realisations, the estimated mean and
variance were very close to the expected figures. Using
the approximation of the mean, we can therefore write
the fractional prior volumes

logXi ≈ − (i±
√
i)/N , (31)

and we use this approximation in the implementation,
where we work with logarithmic quantities to overcome
the huge range of the variables.
As we now have an approximation to the proportion of

the prior mass remaining after the i-th iteration, we can
assign a weight to each sample as wi = Xi −Xi−1.
As all structure of the likelihood function in the pa-

rameter space Θ is eliminated by the mapping to X , the
nested sampling algorithm is in principle robust against
multi-modal distributions, degeneracies and problems
arising from the high dimensionalality of the parameter
space. However, this relies on being able to sample the
likelihood-limited prior distribution effectively. This dif-
ficult problem can be solved in a variety of ways, but the
approach which we have found effective is described in
section IVA.
Note that if the bulk of the posterior is concentrated

in a region of size e−H of the prior, it will take approxi-
mately NH±

√
NH iterations of the geometric shrinkage

to reach the zone of high likelihood. This tells us that
the algorithm will take longer to compute the integral
if there is a larger amount of information in the data.
This means the run time of the implementation is essen-
tially dependent on the signal to noise ratio of any found
signals, as well as on the number of live points N used.
Finally, we need to specify a termination condition,

upon which we decide that the integral is finished. We
could set a hard number for this, or a certain fraction of
the prior, but the total number of points needed varies

Z

~✓2⇥
p(~d|~✓,~�, HS)p(~✓|~�, HS) = Z =

Z 1

0
L(X)dX
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Live points (1024 samples from 
inside contour)
Used points
Replacement samples are drawn from 
inside the contour using MCMC

geometric
shrinkage
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MCMC
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LALInference
Generating samples directly from posterior PDF is hard.

Need to know the shape of the distribution, which is the point of doing the analysis.

Instead, use probabilistic algorithms.

MCMC & Nested Sampling algorithms have been investigated for CBC & general GW analyses:

• MCMC: Röver, et al CQG 23 (2006) [4 params]; PRD 75 (2007) [9 params] ... van der Sluys et al ApJL 688 L61 (2008) [15 params] .... Raymond 
et al CQG 26 (2009) ... Littenberg & Cornish PRD 80 (2009) ....

• Nested Sampling: Veitch & Vecchio PRD 78 (2008) [4 params] ... Feroz et al CQG 26 (2009) ... Veitch & Vecchio PRD 81 (2010) [9 params] ....

Several groups combined efforts to implement common library for analyses of real data: LALInference.

• Free software, download from https://www.lsc-group.phys.uwm.edu/daswg/projects/lalsuite.html

• Reviewed and robust waveforms, likelihoods, priors, samplers.

• Uses MCMC, Nested Sampling or MultiNest for P.E. & model selection

16
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Consistency checks
How can we be confident we have solved the problems?

Cross-checks with different samplers

Check against known likelihood functions

17
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Consistency checks
Also use probability - probability plots 
to compare Bayesian probability 
intervals with frequency of result in a 
Monte Carlo over many injections

Do 5% of injections fall inside the 
5% probability interval?

18
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S6 Parameter Estimation
S6 parameter estimation paper hit the arXiv this week!    arXiv:1304.1775

Put LALInference into practice on hardware and software injections

BNS, NSBH and BBH

spinning and non-spinning

Comparison of results with different waveform approximants

19

Parameter Estimation for Compact Binary Coalescence events with first-generation

ground-based Gravitational-Wave Detector Network.

The LIGO Scientific Collaboration1 and The Virgo Collaboration2

1
The LSC

2
Virgo

( RCS Id: s6pe.tex,v 1.115 2013/02/03 13:10:32 john.veitch Exp ; compiled 4 February 2013)

Gravitational waves from coalescing compact binaries, a primary source for ground-based
gravitational-wave detectors, encode information about source physics. Detailed models of the
anticipated waveforms from these coalescences enable inference on parameters including component
masses, spins, sky location, and distance. Parameter estimation and model selection in multi-
dimensional parameter spaces are complex but necessary in order to pursue gravitational-wave
astronomy and astrophysics. In this paper, we describe the application of tools that we developed
for LIGO-Virgo parameter estimation to several simulated signals in the most recent detector data
and we present the results in a qualitatively similar way to what we expect will be delivered in
the advanced detector era. We demonstrate that we can successfully recover the known parame-
ters of these signals, subject to statistical measurement uncertainties and systematic biases due to
di↵erences between the waveform families used for simulation and analysis.

LIGO-P1200021-v5 � Circulation restricted to LSC and Virgo members

PACS numbers: 04.80.Nn, 04.25.dg, 95.85.Sz, 97.80.-d

I. INTRODUCTION

Binary systems of compact objects – black holes or
neutron stars – lose energy through the emission of grav-
itational radiation, as predicted by general relativity
and confirmed through binary-pulsar observations [1, 2].
During this process they emit a characteristic “chirp-
ing” gravitational-wave signal of predominantly increas-
ing amplitude and frequency that enters at ⇠ 40 Hz
the observational band of the generation of ground-based
laser-interferometric detectors operated so far, sweeping
through the detection band for a few seconds (depending
on the masses of the objects) until they coalesce.

The search for gravitational-wave signatures of
compact-binary coalescence in LIGO’s most recent sixth
science run and Virgo’s science runs 2 & 3 is described in
[3? ]. Here, we describe the status of the next analysis
stage after the detection searches: parameter estimation
and model selection.

Being able to accurately estimate the parameters of
the merging binary, including the masses of the com-
ponents, their spins, and the location of the binary on
the sky, is a critical ingredient for enabling gravitational-
wave astrophysics. Localizing the merger on the sky is
crucial for a successful electromagnetic follow-up of the
gravitational-wave detection, which is one of the possible
approaches to multimessenger astronomy (see, e.g., [4?
, 5]). Obtaining information about compact masses and
spins could lead to unexpected discoveries for individual
events (for example, finding compact objects inside the
surmised mass gap between neutron stars and black holes
[6, 7]). Eventually, when multiple detections are available
for analysis, inference about the distribution of the pop-
ulation of coalescing compact binaries will allow us to
probe the astrophysics of binary evolution and dynamics
of dense stellar environments (e.g., [8, 9]).

In Section II we give a brief overview of the analysis
method. While no detections were claimed in [3], simu-
lated signals (‘injections’) were added to the data, both
at a hardware level as the data was being taken and in
software afterwards. The“hardware injections” were per-
formed to validate the end-to-end analysis, including pa-
rameter estimation on detection candidates, whereas the
software injections serve as a useful comparison, free of
any calibration error in the interferometers. We illustrate
our analysis using 6 Hardware and Software injection ex-
amples described in section III. One of these hardware
injections was performed without the knowledge of the
data analysis teams as part of the “blind injection chal-
lenge”; it was successfully detected as reported in [3]. We
conclude with the possible implications for gravitational-
wave astronomy in section IV.

II. ANALYSIS

Each data segment containing an injected signal was
analysed using a Bayesian parameter estimation method
which calculates the joint posterior probability density
functions (PDFs) of the parameters of each model. The
parameters form a parameter space for the model H, and
a point in this space is denoted ~✓. Parameters for the sig-
nal model include the component masses and spins (for
some models), luminosity distance, location and orienta-
tion of the source. The posterior PDF is generated from
a prior distribution function p(~✓|H), describing knowl-
edge about the parameters within a model H before the
data is analysed, and a likelihood function p({d}|~✓, H),
denoting the probability under model H of obtaining the
dataset {d} for a given parameter set ~✓. The likelihood
is a function of the noise-weighted residuals after sub-
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S6 Parameter Estimation
BNS (HW)
BNS HW injection

SNR ~36

EOBNR waveform

1.8 - 1.65 Msun

Distance poorly 
recovered

32s template took 
MONTHS to 
analyse using 
SpinTaylorT4
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FIG. 4. (left) Posterior probability distributions for the chirp mass M of the non-spinning BNS hardware injection (section
IIIA 2) for the seven signal models considered. The injected value is marked with a vertical red line. (right) Overlay of 90%
probability regions for the joint posterior distribution on the component masses m1, m2 of the binary. The true value is marked
by the blue star.

FIG. 5. Joint posterior probability regions for the location and inclination angle of the non-spinning BNS hardware injection
(section IIIA 2) for the seven signal models considered. (left) The binary can be constrained to two regions of the sky
representing the reflection of the source location through the plane of the detectors. (right) The distance and inclination, like
the sky location, are estimated with a similar accuracy in models that include or exclude spins. The data were such that the
injected distance and inclination angle are far outside the 90% credible intervals.

parameter from being measured precisely. The model de-
scribing most accurately the data, with the highest Bayes
factor in table III, Full STPN, delivers the most accurate
parameter estimates, as expected since this model was
used for the injection.

Figure 11 shows the posterior PDFs for the spin pa-
rameters. The spin magnitude of the neutron star is un-
constrained due to the large di↵erence in masses. The
spin of the more massive black hole encodes more infor-
mation in the waveform, but is also poorly constrained
due to the almost face-on inclination.

C. Blind hardware injection

The search pipeline described in [7] identified a GW
candidate occurring on 16 September 2010 at 06:42:23
UTC. A Bayesian analysis was performed using the algo-
rithms and implementations described above, where pa-
rameter estimates varied significantly depending on the
exact model used for the gravitational waveform.
Following the completion of the analysis, the event was

revealed to be a blind injection. Further investigation re-
vealed several problems with the pre-un-blinding param-
eter estimation:

• The template signal included phase corrections
only up to 2.5pN order, which is an outlier in the
post-Newtonian expansion, see [57]. At that time
(before the blind injection was revealed as such) pa-
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parameter from being measured precisely. The model de-
scribing most accurately the data, with the highest Bayes
factor in table III, Full STPN, delivers the most accurate
parameter estimates, as expected since this model was
used for the injection.

Figure 11 shows the posterior PDFs for the spin pa-
rameters. The spin magnitude of the neutron star is un-
constrained due to the large di↵erence in masses. The
spin of the more massive black hole encodes more infor-
mation in the waveform, but is also poorly constrained
due to the almost face-on inclination.

C. Blind hardware injection

The search pipeline described in [7] identified a GW
candidate occurring on 16 September 2010 at 06:42:23
UTC. A Bayesian analysis was performed using the algo-
rithms and implementations described above, where pa-
rameter estimates varied significantly depending on the
exact model used for the gravitational waveform.
Following the completion of the analysis, the event was

revealed to be a blind injection. Further investigation re-
vealed several problems with the pre-un-blinding param-
eter estimation:

• The template signal included phase corrections
only up to 2.5pN order, which is an outlier in the
post-Newtonian expansion, see [57]. At that time
(before the blind injection was revealed as such) pa-
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S6 Parameter Estimation
NSBH (SW, spinning)
Spinning NSBH software injection

SpinTaylorT4 waveform

10 - 1.4 Msun

SNR ~13

Only fully spinning waveform accurately 
estimates masses & distances

Good evidence for spin (logB ~ 12)

Discovered NSBH is surprisingly 
difficult to analyse. Had to re-run with 
higher accuracy.

21
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FIG. 9. (left) Posterior probability distributions for the chirp mass M of the spinning NSBH software injection (section III B 2)
for the seven signal models considered. The injected value is marked with a vertical red line. (right) Overlay of 90% probability
regions for the joint posterior distribution on the component masses m1, m2 of the binary.

FIG. 10. Joint posterior probability regions for the location and inclination angle of the spinning NSBH software injection
(section III B 2). (left) The binary is localized well on the sky. (right) In this case, the true value lies outside of the 90% credible
interval of the joint distance-inclination marginalized probability density function.

FIG. 11. Posterior probability distributions for the dimensionless spin magnitude of the heavier (left) and lighter (right)
components of the binary from the spinning NSBH software injection (section III B 2), as inferred in the model ST (table I),
full-spin STPN; the true values are shown with vertical red lines.
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for the seven signal models considered. The injected value is marked with a vertical red line. (right) Overlay of 90% probability
regions for the joint posterior distribution on the component masses m1, m2 of the binary.

FIG. 10. Joint posterior probability regions for the location and inclination angle of the spinning NSBH software injection
(section III B 2). (left) The binary is localized well on the sky. (right) In this case, the true value lies outside of the 90% credible
interval of the joint distance-inclination marginalized probability density function.

FIG. 11. Posterior probability distributions for the dimensionless spin magnitude of the heavier (left) and lighter (right)
components of the binary from the spinning NSBH software injection (section III B 2), as inferred in the model ST (table I),
full-spin STPN; the true values are shown with vertical red lines.
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S6 Parameter Estimation
BBH (SW, spinning)
Spinning BBH SW injection

6 - 5 Msun

SNR ~19

Relatively easy to analyse

Systematic bias surprisingly small 
for all but TF2_2PN

Spins poorly constrained (c.f. non-
spinning PDFs) with no significant 
evidence in favour of fully spinning 
waveform

22
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FIG. 6. (left) Posterior probability distributions for the chirp mass M of the spinning BBH software injection (section III B 1)
for the seven signal models considered. The injected value is marked with a vertical red line. (right) Overlay of 90% probability
regions for the joint posterior distribution on the component masses m1, m2 of the binary.

FIG. 7. Joint posterior probability regions for the location and inclination angle of the spinning BBH software injection (section
III B 1). (left) The binary’s true location lies just outside of the 90% credible interval. (right) The degeneracy in distance and
inclination prevents either parameter from being accurately constrained individually.

FIG. 8. Posterior probability distributions for the dimensionless spin magnitude of the heavier (left) and lighter (right)
components of the binary from the spinning BBH software injection (section III B 1), as inferred in the model ST (table I),
full-spin STPN; the true values are shown with vertical red lines.
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S6 Parameter Estimation
BBH (HW, non-spinning)
Non-spinning BBH hardware 
injection

4.9 - 4.0 Msun

SNR 13

Easy to analyse

Most templates suffice to 
recover masses

Very similar PDFs on spins as in 
the spinning BBH case!

need longer waveforms? 23

10

FIG. 1. (left) Posterior probability distributions for the chirp mass M of the non-spinning BBH hardware injection (section
IIIA 1) for the seven signal models considered. The injected value is marked with a vertical red line. (right) Overlay of 90%
probability regions for the joint posterior distribution on the component masses m1, m2 of the binary. The true value is marked
by the blue star. Models which allow for non-zero spins find wider PDFs for the coupled mass parameters.

FIG. 2. Joint posterior probability regions for the location and inclination angle of the non-spinning BBH hardware injection
(section IIIA 1) for the seven signal models considered. (left) The binary is constrained to two neighboring regions of the sky.
(right) The distance and inclination, like the sky location, are estimated with a similar accuracy in models that include or
exclude spins.

FIG. 3. Posterior probability distributions for the dimensionless spin magnitude of the heavier (left) and lighter (right)
components of the binary from the non-spinning BBH hardware injection (section IIIA 1), as inferred in the model ST (table I),
full-spin STPN. The injection was made with a1 = a2 = 0.
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S6 Parameter Estimation
Big Dog
Blind injection!

24.8 - 1.7 Msun

SNR ~16

Had a number of issues with 
waveform

High asymmetry makes longer 
template, better spin resolution

24

15

FIG. 12. (left) Posterior probability distributions for the chirp mass M of the blind injection (section III C) for signal models
at 2.5pN. The injected value is marked with a vertical line. (right) Overlay of 90% probability regions for the joint posterior
distribution on the component masses m1, m2 of the binary. The bias introduced by an analysis with a model which disallows
spin is clear.

FIG. 13. Joint posterior probability regions for the location and inclination angle of the blind injection (section III C). (left)
The sky location is constrained to several distinct regions lying along a half circle on the sky. (right) Again, the characteristic
V-shape degeneracy in distance and inclination is evident.

FIG. 14. Posterior probability distributions for the dimensionless spin magnitude (left) and tilt angle (angle between the spin
vector and the orbital angular momentum, measured at 40Hz, right) of the heavier component of the binary from the blind
injection (section III C), as inferred with model full-spin STPN at 2.5 pN order in phase (table I); the true values are shown
with vertical red lines. The large di↵erence in masses allows for the spin of the massive component to be measured. On the
other hand, the spin of the light component is unconstrained.
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Towards advanced
detector era
Advanced detectors will allow lower frequency cutoffs

Longer templates

Want to push low frequencies for measuring masses, 
spins. Not so relevant for sky localisation (bandwidth)

But we have 3 month detection -> publication 
schedule!

Especially difficult for BNS!
25

1.4 M� neutron stars gives a matched filter signal-to-noise ratio of 8 in a single detector [6]1. The
BNS ranges for the various stages of aLIGO and AdV expected evolution are also provided in Fig. 1.
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Figure 1: aLIGO (left) and AdV (right) target strain sensitivity as a function of frequency. The
average distance to which binary neutron star (BNS) signals could be seen is given in Mpc. Current
notions of the progression of sensitivity are given for early, middle, and late commissioning phases,
as well as the final design sensitivity target and the BNS-optimized sensitivity. While both dates
and sensitivity curves are subject to change, the overall progression represents our best current
estimates.

The installation of aLIGO is well underway. The plan calls for three identical 4 km interfer-
ometers, referred to as H1, H2, and L1. In 2011, the LIGO Lab and IndIGO consortium in India
proposed installing one of the aLIGO Hanford detectors, H2, at a new observatory in India (LIGO-
India). As of early 2013 LIGO Laboratory has begun preparing the H2 interferometer for shipment
to India. Funding for the Indian portion of LIGO-India is in the final stages of consideration by
the Indian government.

The first aLIGO science run is expected in 2015. It will be of order three months in duration,
and will involve the H1 and L1 detectors (assuming H2 is placed in storage for LIGO-India). The
detectors will not be at full design sensitivity; we anticipate a possible BNS range of 40 – 80 Mpc.
Subsequent science runs will have increasing duration and sensitivity. We aim for a BNS range
of 80 – 170Mpc over 2016-18, with science runs of several months. Assuming that no unexpected
obstacles are encountered, the aLIGO detectors are expected to achieve a 200 Mpc BNS range
circa 2019. After the first observing runs, circa 2020, it may be possible to optimize the detector
sensitivity for a specific class of astrophysical signals, such as BNSs. The BNS range may then
become 215 Mpc. The sensitivity for each of these stages is shown in Fig. 1.

Because of the planning for the installation of one of the LIGO detectors in India, the installation
of the H2 detector has been deferred. This detector will be reconfigured to be identical to H1 and
L1 and will be installed in India once the LIGO-India Observatory is complete. The final schedule
will be adopted once final funding approvals are granted. It is expect that the site development

1
Another often quoted number is the BNS horizon—the distance at which an optimally oriented and located

BNS system would be observed with a signal to noise ratio of 8. The BNS horizon is a factor of 2.26 larger than the

BNS range.

3

BNS @ 150Mpc

BBH @ 400Mpc

flow
chirp length 

(1.4-1.4)
chirp length

(5-5)
40 Hz 25 s 3 s
30 Hz 55 s 6.5 s
20 Hz 160 s 19 s
15 Hz 345 s 42 s
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Computational Cost
Run-time is dominated by

Template calculation (60-99% run-time)

including FFT for time-domain signals

scales with length of template and sampling frequency

Already vastly improved by LALSimulation (~x2)

Overlap calculation (remainder of run-time)

Once per detector

Already caches template to avoid recalculation for each 
detector (x3 speed-up)

Uses accelerated trigonometry approximation
26

Nested 
Sampling

MCMC 
sub-chain

Likelihood 
calculation

Template 
calculation

~30 N iterations

M samples per 
chain

for each IFO

<- expensive!

x N live points
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Optimisations:
Adaptive MCMC chains

MCMC stage draws uncorrelated samples from the prior bounded by a likelihood 
contour.

Requires likelihood to be checked for each sample

Difficulty of sampling this distribution varies at different stages of the run

Required number M must be large enough to accommodate the most difficult 
part of the run

Optimisations:

Automatically determine the necessary M as the run progresses

Don’t need to compute Likelihood for every sample in the chain, just check 
before accepting end of chain

27

Nested 
Sampling

MCMC 
sub-chain

Likelihood 
calculation

Template 
calculation

~30 N iterations

M samples per 
chain

for each IFO

<- expensive!

x N live points

cost saved
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Optimisations:
Analytic Marginalisation
Don’t care about phase parameter! - analytically marginalise it away

Modified likelihood: 

Eliminates 1 dimension (reduces information and therefore run time)

logZ before: 368.60, after: 368.62

Run-time reduced by factor 4 !

Smoothes likelihood for easier sampling, fewer MCMC steps needed!

Details in LIGO-T1300326

28

LIGO-T1300326: Analytic Marginalisation of Phase Parameter

Figure 1: Comparison of posterior PDFs for some parameters with and without the marginalised phase
likelihood. The distributions are statistically the same, all passing the K-S test.

4

LIGO-T1300326: Analytic Marginalisation of Phase Parameter

Figure 1: Comparison of posterior PDFs for some parameters with and without the marginalised phase
likelihood. The distributions are statistically the same, all passing the K-S test.
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Optimisations:
Parallelisation

Parallelise work by running more chains with fewer live 
points each.

Same amount of work but done in less clock time

29

Nested 
Sampling

MCMC 
sub-chain

Likelihood 
calculation

Template 
calculation

~30 N iterations

M samples per 
chain

for each IFO

<- expensive!

x N live points
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Prospects for further speed
Further optimisations that might be 
possible:

Algorithm:

Adaptive number of live points

Parallelisation

different algorithm (dNest?)

More efficient proposals

Template generation / overlap 
calculation:

lookup tables for precalculation

GPUs?

multi-bandwidth (MBTA-style)?

Interpolated templates (R. Smith)

Further analytic marginalisation:

Closed forms probably impossible

Rapidly convergent Taylor expansion... 
maybe

Probably another order of magnitude to 
be gained at least!

30
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CBC Advanced Detector
Science

Stellar evolution

Maximum mass of NS?

Equation of state from tidal 
interactions

Physics of quark matter at core

sGRB central engine

Test GR orbital prediction

Confirm predicted existence of 
NSBH/BBH binaries

Measure spins

“kick” from supernova

Lower mass limit of BH?

Test no hair theorem

Tidal disruption in NSBH?
31

★ Find astrophysical rate of BNS, NSBH, BBH

★ Measure mass distributions of neutron stars and black holes
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Sky localisation

Simulation with 750 BNS signals in different networks [Veitch et al PRD 85 2012]

32
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Breaking sky position 
degeneracy

33

face-on BNS, SNR 10
95% area: 11.75 deg2
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Breaking sky position 
degeneracy

34

edge-on BNS, SNR 10
95% area: 45.5 deg2
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Masses

35
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Extrinsic parameters

36
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Measuring populations
Rate and mass distributions are not properties of any single source. By 
definition, require consideration of populations.

3 key things to bear in mind:

Population of detected signals ≠ population of present signals

Trigger ≠ real signal

non-trigger ≠ no signal

Considering these facts, what does an analysis look like?

37
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Assume the search applies a threshold 
on detection statistics x>xth. If we 
receive a GW trigger (D+), we can look 
at the data x and write the posterior on 
global parameters γ.

which is summed over the evidence for 
each model

If we do NOT receive a trigger (D-), we 
still have information about the global 
parameters γ! But this time we don’t 
look at the data x.

Where the unknown value of x is 
marginalised out.

Thresholding

38

Avoiding selection bias in gravitational wave astronomy 4

as

p(�|D+, x, I) =
X

{H}
p(�,H|D+, x, I)

=
p(�|I)
P(x|I)

trigger likelihood p(D+,x|�,I)z                           }|                           {X

{H}
p(x|�,H , I)P(H|�, I) (1)

where P(H|�, I) represents the prior probability on the model H conditional on the global
parameters. Here we are summing the trigger likelihoods over the set of possible models {H},
and we do not assume that the model priors are independent of the global parameters, which
will be important when discussing signal abundance and rates. The range of possible models
can include those where more than one signal is present in the data. We have used the fact
that the probability of a trigger conditional on the value x is strictly equal to H(x� xth) (where
H(x) is the Heaviside step function) which is equal to unity for x > xth. If the model has local
parameters ✓H , we calculate the factor p(x|�,H , I), i.e. the likelihood of the data conditional
on the model and the global parameters, by marginalization:

p(x|�,H , I) =
Z

⇥H

d✓H p(x|✓H ,�,H , I)p(✓H|�,H , I), (2)

where ⇥H is the local parameter space associated with the local parameter ✓H and the model
H . Note that we do not modify this likelihood function to reflect our knowledge of the
threshold.

In the alternative case D� where we discarded the specific value of x, we do still know
that x  xth. For a non-trigger we can therefore write the posterior probability on � (analogous
to Eq. (1)) as

p(�|D�, I) =
p(�|I)

P(D�|I)

non�trigger likelihood p(D� |�,I)z                             }|                             {X

{H}
P(D�|�,H , I)P(H|�, I) (3)

As the value of x is unknown the posterior on � must be marginalized over both the local
parameters ✓H and the unknown data x in the range x  xth. Therefore only the information D�

appears in the likelihood of a non-trigger conditional on the model and the global parameters:

P(D�|�,H , I) =
Z

⇥H

d✓H
Z

xxth

dx p(x|✓H ,�,H , I)p(✓H|�,H , I)

(4)

The quantity derived in Eq. (4) is related to what is known as the selection function or detection
e�ciency, defined as the probability of a trigger given the true signal parameters for a given
signal model. Here it appears in a modified form: the probability of a non-trigger given a
set of global parameters and a model. It is only in this term that the detection threshold xth

actually appears. In practice this quantity (just like the detection e�ciency) can be di�cult to
estimate in some cases.
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signal model. Here it appears in a modified form: the probability of a non-trigger given a
set of global parameters and a model. It is only in this term that the detection threshold xth

actually appears. In practice this quantity (just like the detection e�ciency) can be di�cult to
estimate in some cases.
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Multiple Sources
Divide the run into multiple independent time 
chunks. Can write

decomposed into the triggers and non-
triggers

Make the time chunks small enough that 
mean number of signals per chunk <<1.

Summing over signal and non-signal models, 
have

where no individual chunk is ever conclusively 
labelled “signal” or “background”.
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2.1. An ensemble of trials

Using Eqns. (1) and (3) together with Bayes’ theorem we are able to isolate the single trial
likelihood functions (identified by the over-braces) in both the trigger and non-trigger cases,
P(D+, x|�, I) and p(D�|�, I) respectively. We can now also consider analysing an ensemble of
N trials denoted as {D}, where we index each Di using i 2 (1,N). The posterior probability
for the global parameters after N independent trials are performed is simply

p(�|{D}, I) =
p(�|I)

P({D}|I)

NY

i=1

p(Di|�, I). (5)

We can further decompose this expression into trigger D+ and non-trigger D� factors,

p(�|{D}, I) =
p(�|I)

P({D}|I)

nY

j=1

p(D+, x j|�, I j)
N�nY

k=1

P(D�|�, Ik), (6)

where j and k index the n triggers and the N � n non-triggers respectively, and I j, Ik

allow for di↵erent background information (such as time-varying detector sensitivity) in each
measurement.

We now focus on the common case where there are only two possible models: the
presence (H+) or absence (H�) of a single signal per trial. We can reach this case in practice
by considering a trial to be a period of time where the probability of > 1 signal is arbitrarily
small. Equation (6) becomes

p(�|{D}, I) =
p(�|I)

P({D}|I)

⇥
nY

j=1

h
p(D+, x j|�,H+, I j)P(H+|�, I j) + p(D+, x j|�,H�, I j)P(H�|�, I j)

i

⇥
N�nY

k=1

⇥
P(D�|�,H+, Ik)P(H+|�, Ik) + P(D�|�,H�, Ik)P(H�|�, Ik)

⇤
. (7)

To relate this to more standard statistical terms, consider the key components which make up
the expression, each of which are in reference to single trials:

• p(D+, x j|�,H+, I j) is the likelihood of producing a trigger with statistic value x j when a
signal is truly present.
• p(D+, x j|�,H�, I j) is the likelihood of producing a trigger with statistic value x j from

only the background distribution.
• P(D�|�,H+, Ik) is the likelihood that a true signal does not produce a trigger, i.e. the

false dismissal likelihood (or 1�detection e�ciency).
• P(D�|�,H�, Ik) is the likelihood that no trigger is produced when no signal is present,

i.e. the true dismissal likelihood.

The abundance or true rate of signal events is important in the two model case, when
the two models are for a single signal and background. As the two models give a complete
description of the data, we can write P(H+|�, I) = 1 � P(H�|�, I). The actual rate of signals,
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likelihood of trigger given signal
likelihood of trigger given noise (FAP)
false dismissal probability (1-eff.)
True dismissal probability (1-FAP)
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Example analysis
Mass distribution
Estimate the mean and std. dev. of the 
distribution of BNSes.

Toy example - assumes masses are measured 
exactly.

solid lines - our method

dashed lines - assuming all triggers are 
signals

Lowering threshold leads to narrower 
distributions.

Using only triggers, get increasingly biased 
result.

Also true for testingGR, cosmology, anything 
that uses multiple signals
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Figure 1. Joint probability contours on the combined global parameters µm and �m for 4
di↵erent threshold values ⇢th = 8, 5, 4.5, 4.3. There were a total of 525600 experiments of
which 87 contained signals. For ⇢th = 8 there were 6 triggers and all were signals. For
⇢th = 5 there were 29 triggers of which 25 were signals and 4 were noise events. For ⇢th = 4.5
there were 48 triggers of which 37 were signals and 11 were noise events, and finally, for
⇢th = 4.3 there were 78 triggers of which 40 were signals and 38 were noise events. The true
values of the mean and standard deviation of the mass are indicated by the solid red lines.
Contours enclose 68%, 95% and 99.7% of the probability. The black contours correspond to
the application of our method accounting for both triggers and non-triggers and both the signal
and noise models. The dashed grey contours represent results from an analysis accounting for
triggers-only and assuming a signal model only.

[Messenger & Veitch 2013]
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Rate estimation

Lowering threshold again leads 
to more precise results without 
bias.

Rate is special - determines 
the prior odds of signal and 
noise.

In general, inseparable from 
other population parameters.

41

Avoiding selection bias in gravitational wave astronomy 8

0

10

20

30

1.10 1.15 1.20 1.25 1.30

p(
µ

m
)

µm (M�)

0

20

40

0.0 0.05 0.10 0.15 0.20

p(
�

m
)

�m (M�)

0

1.0

2.0

0 0.5 1.0 1.5 2.0 2.5

p(
R)

R (⇥10�7 Mpc�3 Yr�1)

Figure 2. Marginalised posterior probability distributions on the global mass parameters µm,
�m and the rate R for a range of di↵erent threshold values ⇢th = 7, 6, 5, 4, 3. The fraction
of noise triggers above threshold associated with these values are 0, 0, 0.138, 0.80, 0.988
respectively. There were a total of 525600 experiments of which 87 contained signals and
the curves go from light grey to black as the threshold decreases. The true values of the global
parameters are indicated by the solid vertical red lines. 41vrijdag 12 april 13



Further work
Currently extending our population analysis to process 
posterior samples from parameter estimation codes instead 
of point estimates.

Comparing parametric and non-parametric methods of 
recovering the mass function of NS and BH in binaries [Veitch, 
Messenger, Del Pozzo (in prep.)]

Use our method to probe the actual impact of systematic 
errors from waveforms in realistic scenarios.

Can we constrain population synthesis models?

42
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Summary
We are now developing the tools that will be used for GW 
astronomy.

Astronomy generally involves statistics of multiple sources.

Searching is the first step. Detected signals are the raw ingredients

But it must be well-understood or we will have problems later

Selection effects are likely to be important

Parameter estimation for single sources is mature, and improving in 
speed and capability

Will be used to feed information to more complex models
43
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