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Compact Binaries

Coalescence of black holes and neutron stars _ I8 Eary (2015, 40— 80 Mpo)
In binaries are the primary candidate for Mid (2016-17, 80 — 120 Mpc)

I Late (2017-18, 120 — 170 Mpc)
ground-based GW detectors. B Design (2019, 200 Mpc)

BNS-optimized (215 Mpc)

\%
N

—
C)I

Astrophysical event rates uncertain:

x NS-NS: 0.01 - 10/ (MpcMyr)

x NS-BH: 4x104 - 1 / (Mpc3Myr) (theoretical)
x BH-BH: 1x104 - 0.3 /(Mpc3Myr) (theoretical)

[Abadie et al Class. Quant. Grav 27 172001 |

strain noise amplitude (Hz"” 2)

Translated to BNS detections:
Early (2015): 0.0004 - 3

Beyond confirming the

Mid (2016-2017): 0.006.- 20 existence of gravitational |
Late (2017-2018): 0.04 - 100 waves, what can they tell us
Final: 0.2 - 200 about astrophysics?

[ LIGO-DCC P1200087 ]
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What parameters? | '9

.
o
What parameters are there are to measure for an individual source?

 The simplest model of a compact binary in a circular orbit has 9 ae...
parameters | !

, Time, sky position, |
e Add spins for another six
2 magnitudes, 4-orientation angles
¢ and neutron stars have equation of state parameters

Tidal deformabillity of each star A1, A2
e Then there are possible deviations from-the GR model...

4
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Model gravitational wave )

. -
p—y
The response of a given detector to an incoming CBC signal is a complicated function'of the
physical parameters:

hi(t) = Ay(t— AL)FL(t — At;) exp Oy (t — At;) HIABAL) FL (t — At;) exp Ou (E — Aty)

Can categorise them as instrinsic: (I)+( ), b (t) < T Sl, SQ, L, ¢O
and extrinsic A, A Fi,F;,Ati —dy, o, 0,0,

(assuming we know the position and orientation of the detectors)

I
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NoIsy detectors

Unfortunately signal is buried in additive noise from the detector:

1

V1
0.5 W|
0.0

Must also model the noise!
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Noise model | '9

¢ -
B
Simplest noise model makes few assumptions:
= zero mean: <ni>=0
Hao
®x known variance: <nie> = Sp(f) Af = 0¢ | |
2

Maximum entropy distribution is Gaussian, i.e. p(n;|lo;) = \/Qim_ exp {— 2?2}

= Assuming independence In each frequency bin:

p({n}l{o}) = TL, plulons) — [T, ptep [ |

(2

®  And independence in each detector:
p(fimg, Ny, Mv|0a,0n,0v) = p(ng|om)p(fic|or)p(nv|oy)

®x [erminology: the “likelihood” of the noise

7
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| Ikelihnood function “ '9

¢ -
.
For additive noise, di=hi+ni, the mean of the data distribution becomes the prediction of the
signal model for given parameters 6: <di> = h(fi,8), whereas variance remains the same.

Putting everything together, we have a model of the data containing an unknown S|gnal and 'f-n-.
noise, and can write the joint distribution of all quantltles as |

p(d,0|¢, Hs) =p(df,, Hs)p(0|G, Hs)
= p(0|d, o, Hs)p(d|c, Hg)

If we then observe a specific set of data, we can infer the parameters of the signal by calculatiné
the posterior probability distribution (PDF)

7| =t _ p(0]d,3,Hs)p(d|5,Hs)
p(ld; 7, Hs) ™ = == a5 1s)
where ) 75*7 Hg) = ﬁ dgp( _]9_’7 z, Hs)p(g\ﬁ, Hg) s the evidence of the model.
ASS) .

8
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Model Selection

TR |
In detector data we do now know if a signal is present or not, so we can compute the relative
probability of the signal and null (noise) hypotheses - “odds ratio”

p(Hs\d) _ p(HCpldlHs) )

p(Hnx|d) — PHN) p

Incoherent search pipelines matched filter each detector independently: validigiven the
iIndependence of noise in each detector.

Information about the signal (priors, coincidence in time, parameter Consistehcy between
detectors, multi-detector coherence..i) belongs on the numerator.

Can also compute odds between different models to-compare theories of gravity, neutron star
equations of state, etc.

9
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Calculating posteriors

Nothing so far is specific to searching or parameter estimation.

But, the waveform model of a CBC signal in a given detector depends
on 9 or more physical parameters,

67: {Mvnatm ¢Cv dL7 a, 57 Lawv X }

and the likelihood function is:;

e non-linear: difficult to find maximum
e non-invertible: multiple maxima

To fully search this space need >2°° templates. This is impractical, so
what to do?

e Search codes: Maximise! Reduce dimensionality by eliminating
extrinsic parameters

e Parameter estimation codes: Sample posterior PDF
10
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Viarginalisation

c > ®e = o9 e e o0 oo ge o oo oeoge ol cr e e e e g ee -e - ey e =

....................................

...................................

Eliminate nuisance R e | T e
parameters by integrating out R T
. 0) = [ i@l Do o | R

Can be done easily with
collection of posterior
samples by producing
histograms for the S
parameters of interest. | ........ .........
Can use 2D histograms ||
to see correlations, etc

.......................

............................
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Nested Sampling e

i

Nested sampling [Skilling 2004] is designed So we can also write 7 = ; LL(X )dX
to calculate the evidence integral 0

probabilistically using random samples Key idea: remap the N-dimensional integral
~ N ~ over B to a 1-D integral over X. T,
Z = p(do. Hs) = [ afp(dd. 7, Ho)p(@. Ho) f
€O Each nested contour shrinks by (N-1) / N
CZ’Q_’ o (9"1_[ sl _)d o times. Choose X(A) by randomly sampling N
p(dl6. Hs)p(6Hs) = Zp(ld, Hs)  lmes. O

We know from product rule that

Define X (A) = / ~ p(0|Hg)do
L(0)>)\

as the prior mass enclosed by a contour of

equal likelihood A.

X i1s a monotonic function of A between Amin
and Amax, the likelihood range.

Paramoter space
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iteration 1126

(1024 samples from
iINside contour)

iteration 1126

Replacement samples are drawn from
inside the contour using MCMC

iteration 1126

)
nghtascension

phase

iteration 1126

iteration 1126
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vrijdag 12 april 13

13



0.000 %

hlll delay

-0.005

X

~
e

-0.010

-0.02

~0.01

0.00 0.02
vl delay

1.0

T

0.0F 2%

declination

o

-1.0

. 1

==y

iteration 1126

1

vrijdag 12 april 13

()

ant

3 4
rightascension

hill delay

vl delay

0.000| %~

~0.005 %%

7

.’(’ .

-0.010

0.00
hivl delay

iteration 1126

0.02}

0.01F

0.00

0.01

—0.02

0.01

0.00
hivl delay

0.01




Ilterction: 0.00E+4+00

Data points: 0.00E+00 « 1 . . N . L . N ‘ . 1
o 9.5 6

Y L L L ' v ¥ T o | ' ) - r " ‘ T ' ' -

Tt T ot T el Pl Pl Bl B Bl B Bl T Bl N el Pt Bl B Bl B Bl P Bl T el Pl N ol Bt b Bt b Bl B B ®

Chain:

log(L):

0 255075 5

vrijdag 12 april 13 15



| AL Inference ” )

Generating samples directly from posterior PDFE is hard.
®x  Need to know the shape of the distribution, which'is the point of doing the analysis.
Instead, use probabillistic algorithms. . '

MCMC & Nested Sampling algorithms have been investigated for CBC & general GW analyses:

e MCMC: Rover, et al CQG 23 (20006) [4 params]; PRD 75 (2007) [9 params] ... van der Sluys et al ApJL 688 L61 (2008) [15 params] .... Raymond
et al CQG 26 (2009) ... Littenberg & Cornish PRD 80 (2009 ....

e Nested Sampling: Veitch & Vecchio PRD 78 (2008) [4 params] ... Feroz et al CQG 26 (2009) ... Veitch & Vecchio PRD 81 (2010) [9 params] ....*

Several groups combined efforts to implement common library for analyses of real data:

e [ree software, download from https://www.Isc-group.phys.uwm.edu/daswg/projects/lalsuite.html
e Reviewed and robust waveforms, likelihoods, priors, samplers.

e Uses MCMC, Nested Sampling or MultiNest for P.E. & model selection

16
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https://www.lsc-group.phys.uwm.edu/daswg/projects/lalsuite.html
https://www.lsc-group.phys.uwm.edu/daswg/projects/lalsuite.html

Consistency checks

How can we be confident we have solved the problems?

x  Cross-checks with different samplers

o
o

O
IS

x Check against known likelihood functions

Probability Density

o
N

0'95.015.516.016.517.017.518.018.519.0

Probability density

0.05

17
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Consistency checks

Also use probabillity - probabllity plots
to compare Bayesian probability
intervals with frequency of result in a
Monte Carlo over many injections

-
=]

=)
e

- expected
mcmcTayF2 ks:0.0541
mcmcPPN ks:0.1439

x Do 5% of injections fall inside the Vil — et 0070

— lalinfNest ks:0.0567

fraction of injection withen percentile

o
~

40 60 80

5% probability interval? T e

cumulative percentile plot
cumulative percentile plot v Y v

o
)

o
o

On withen percentile

-  expected
expected i (S mcmcTayF2 ks:0.0602
mcmcTayF2 ks:0.0485 - gl mcmcPPN ks:0.1021
mcmcPPN ks:0.1564 ‘ —  multiNest ks:0.0457
—  multiNest ks:0.073 p — lalinfNest k5:0,0736
~ lalinfNest ks:0.0549 2 0 60 80

percentile using ra

fraction of injection within percentile
=
FS
fraction of injecti

o
N

40 &0 80
percentile using mchirp
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S6 Parameter Estimation

S6 parameter estimation paper hit the arXiv this week! arXiv:1304.1775 '

x  Put LALInference into practice on hardware and software injections

»  BNS, NSBH and BBH -
»  sSpinning and non-spinning

= Comparison of results with different waveform approximants

Parameter Estimation for Compact Binary Coalescence events with first-generation
ground-based Gravitational-Wave Detector Network.

The LIGO Scientific Collaboration! and The Virgo Collaboration?

'The LSC
2Virgo
( RCS Id: s6pe.tex,v 1.115 2013/02/03 13:10:32 john.veitch Exp ; compiled 4 February 2013)

Gravitational waves from coalescing compact binaries, a primary source for ground-based
gravitational-wave detectors, encode information about source physics. Detailed models of the
anticipated waveforms from these coalescences enable inference on parameters including component
masses, spins, sky location, and distance. Parameter estimation and model selection in multi-
dimensional parameter spaces are complex but necessary in order to pursue gravitational-wave
astronomy and astrophysics. In this paper, we describe the application of tools that we developed
for LIGO-Virgo parameter estimation to several simulated signals in the most recent detector data
and we present the results in a qualitatively similar way to what we expect will be delivered in
the advanced detector era. We demonstrate that we can successfully recover the known parame-
ters of these signals, subject to statistical measurement uncertainties and systematic biases due to
differences between the waveform families used for simulation and analysis.

LIGO-P1200021-v5 — Circulation restricted to LSC and Virgo members
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http://arxiv.org/abs/1304.1775
http://arxiv.org/abs/1304.1775

S6 Parameter Estimation
BNS (HW)

BNS HW injection
SNR ~36
EOBNR waveform

2500

2000 -

[ | TaylorF2 @3.5PN
Aligned spin STPN
Full STPN

: : : TaylorF2 RedSpin

1000 IMRPhenomB

TaylorF2 @2PN

500 — ol Non-spinning STPN

1 -8 - 1 -65 Msun L 1.;08 1.;12

M (M)

1500 -

Probability density

Distance poorly
recovered

TaylorF2 @3.5PN
Aligned spin STPN
Full STPN

32s template took r
MONTHS to T e

analyse using 2715 RS S S Non-spinning STPN
SpinTaylorT4
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S6 Parameter Estimation
NSBH (SW, spinning)

Spinning NSBH software injection

[ ] TaylorF2 @3.5PN

[ ] Aligned spin STPN

[ 1 Full STPN

[ ] TaylorF2 RedSpin

[ ] IMRPhenomB
TaylorF2 @2PN

u ..I O _ ..| . 4 M SUI’] l 1 Non-spinning STPN

325 350 3.75
M (M,)

x  SpinTaylorT4 waveform

Probability density

x SNR ~13

TaylorF2 @3.5PN

= Only fully spinning waveform accurately | STttt

Full STPN

estimates masses & distances T L T O v

TaylorF2 @2PN
Non-spinning STPN

x  (Good evidence for spin (logB ~ 12)

» Discovered NSBH is surprisingly
difficult to analyse. Had to re-run with
higher accuracy.

Probability density
= =

Probability density

0.4 0.6 0.8 ’ . 0.4 0.6
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SO Parameter Estimation

Spinning BBH SW injection
= 0-5 Msun

x SNR ~19

x Relatively easy to analyse

x Systematic bias surprisingly small
for all but TF2_2PN

®x  SpiNs poorly constrained (c.f. non-
spinning PDFEs) with no significant
evidence Iin favour of fully spinning
waveform

Probability density

vrijdag 12 april 13



S6 Parameter Estimation
BBH (HW, non-spinning

Non-spinning BBH hardware
Injection

x 4.9 -4.0Msun
x SNR 13
= [Easy to analyse

® Most templates suffice to
recover masses

® \ery similar PDFs on spins as In
the spinning BBH case!

® need longer waveforms”

vrijdag 12 april 13
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SO Parameter Estimation . sy
Big Dog '

Blind injection!
x 24.8-1.7 Msun
x SNR ~16

465 480 495
M (M)

x Had a number of Issues with
waveform

®x High asymmetry makes longer
template, better spin resolution

0.6 0.8
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Towards agdvanced
detector era

Advanced detectors will allow lower frequency cutoffs

|
N
—h

—
o

x| onger templates —
J > Bl Early (2015, 40 — 80 Mpc)
Mid (2016-17, 80 — 120 Mpc)

chirp length chirp length

flovv < =Late (2017-18, 120 — 170 Mpc)
£ i 'N Design (2019, 200 M
(1 41 4) (5 5) % Bl?lségoétimized (215?\2230)
40 Hz 25 S 3 S E
30 Hz 55 s 6.5 s ;
20 Hz 160 s 19s 2
15 Hz 345 s 42 s 5
Want to push low frequencies for measuring masses,
spins. Not so relevant for sky. localisation (bandwidth) 10°

frequency (Hz)

x  But we have 3 month detection -> publication
schedule!

» Especially difficult for BNS!

25

vrijdag 12 april 13



Computational Cost ¢ o )

;-
T
Nested Run-time Is dominated by :
Saemspﬁn g B N live points
x [emplate calculation (60-99% run-time)
~30 N iterations , , : — e
| | = ncluding FFT for time-domain signals
MCMC , .
sub-chain = scales with length of template and sampling frequency

M samples per = Already vastly improved by LALSimulation (~x2)

-

chain
Likelihood x  Overlap calculation (remainder of run-time)
calculation
= Once per detector
for each IFO
= Already caches template to avoid recalculation for each
Template .
Calcuf’ation <- expensive! detector (x3 speed-up)

= Uses accelerated trigonometry approximation
26
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Optimisations: - )
Adaptive MCMC chains___

MCMC stage draws uncorrelated samples from the prior bounded by a likelihood
contour.

Nested

sampling B N live points

»  Requires likelihood to be checked for each sample

l ~30 N Iterations

» Difficulty of sampling this distribution varies at different stages of the run

MCMC

: x  Required number M must be large enough to accommodate the most difficult
sub-chain

part of the run

M samples per
chain

Likelihood »  Automatically determine the necessary M as the run progresses

Optimisations:

calculation

l for each IFO

Template

calculation RS expensive!
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Optimisations:
Analytic Marginalisation

Don’t care about phase parameter! - analytically marginalise it away

ml-m2 confidence contours (greedy binning)

gt . |dil2=|hi|? |dihi]
= Modified likelihood: p(n;|o;) o< exp |— >, =955 o[> — =

» Eliminates 1 dimension (reduces information and therefore run time)

®x |0gZ before: 368.60, after: 363.62

= Run-time reduced by factor 4 |

= Smoothes likelihood for easier sampling, fewer MCMC steps needed!

« Details in LIGO-T1300326 W L O

— Nllkeorlglnal
— Nllkemargphl

Number of calculations
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https://dcc.ligo.org/LIGO-T1300326-v1
https://dcc.ligo.org/LIGO-T1300326-v1

Optimisations: v
Parallelisation

Parallelise work by running more chains wWith rewer. live
points each.

Nested

Sampling & N live points

l ~30 N iterations x Same amount of work but done.in less clock.times

dec-ra confidence contours (greedy binning)

MCMC
sub-chain

M samples per

-

chain 2
Likelihood z
calculation ;;
&

for each IFO

Template

calculation RS expensive!

0.0025
mchirp

+1.224
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Prospects for further speed ™

. -
T
Further optimisations that might be = GPUSs? :

possible:
= multi-bandwidth (MBTA-style)?

Algorithm:

» |nterpolated templates (R. Smith)

x Adaptive number of live points _ —
Further analytic marginalisation:

= Parallelisation . .
x  Closed forms probably impossible

» different algorithm (dNest?) . |
= Rapidly convergent Taylor expansion...

= More efficient proposals maylbe
Template generation / overlap Probably another order of magnitude to
calculation: be gained at |least!

®x |ookup tables for precalculation

30

vrijdag 12 april 13



CBC Advanced Detector )
Science ~

% Find astrophysical rate of BNS,; NSBH, BBH

% Measure mass distributions of neutron stars and black holes

x  Stellar evolution x  Confirm predicted existence of

NSBH/BBH binaries
x  Maximum mass of NS?

| | » Measure spins
x Equation of state from tidal

Interactions x  “kick” from supernova
» Physics of quark matter at core = [ ower mass limit of BH?
x SGRB central engine x [est no hair theorem

x [est GR orbital prediction = [idal disruption in NSBH?

31
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Sky localisation

(——ﬁ .
Simulation with 750 BNS signals in different networks veitch et al PRD 85 2012]

-
o
=
Q
S
&
)
>
s
<
o
=
=
=
O

10’ 10°
Probability interval (square deg)
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Breaking sky position
degeneracy

face-on BNS, SNR 10
95% area: 11.75 deg?




Breaking sky position
degeneracy

4’!

.

edge-on BNS, SNR 10
95% area: 45.5 deg?




Fraction of events

005 0.01 0.015 0.02
95% Probability Interval Chirp Mass (Msun)

Fraction of events

== AHLV
= HHLV
HILV

= HHILV

0.005 0.01 0015 0.02 0.025
95% Probability Interval n

0.03 0.035

Fraction of events

== AHLV
= HHLV

0.5 0.6 0.7 0.8 .
95% Probability Interval m |
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0.25
95% Probab

0.3 0.35
ility Interval m,

04
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EXtrinsic parameters

&
o0

o
\]

T inclination -

o
o)

Fraction of events
o
¥,
Fraction of events

<
~

o
8

o
ko

1 0 ' 1 1 L
1.5 : . : 0.6 0.8 1
95% Probability Interval v (rads) 95% Probability Interval ¢ (rads)
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Vleasuring populations ")

b
Rate and mass distributions are not properties of any single source. By

definition, require consideration of populations.

'b--
. 9

3 key things to bear in mind:

®x Population of detected signals = population of present signals
® [rigger # real signal

® Non-trigger = No signal

Considering these facts, what does an analysis look like”

37
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T'hresholding e .

il
Assume the search applies a threshold If we do NOT receive a trigger (D), we
on detection statistics x>xih. If we still have information about the global
receive a GW trigger (D*), we can look parameters y! But this time we don'’t

.

at the data x and write the posterior on look at the data x. | |
global parameters vy.

non—trigger likelihood p(D~|y,I)

D™ 1y = 2NN oy 4, DIy,
{H}

P(D|I)

p(yID", x,1) = Zp(% HID", x,1)

{H)}

trigger likelihood p(D* ,x|y,I)

p(ylD Where the unknown value of x IS

— P(x|D) {;;p (b, H, DP(Hy, 1) marginalised out.

which i1s summed over the evidence for
each model

P(D"ly,H,I) = fd@rﬂfdxp(xlﬂﬂ,y,ﬂ,I)p(Hq{Iy,W,I)

O X<Xth

p(aly, H, T) = f 03 p (X103, H. D p(Oyaly. H. I,

O
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Multiple Sources e

;-
T
Divide the run into multiple independent time Summing over signal and non-signal models,
chunks. Can write have
por01 0 = LI iy
P((DYn L LT - ’ . ]
l (Hty. 1) €p(D*, xjty. H™ L)YH |y 1))]
decomposed into the triggers and non- - TR POty H IDEF - 1l
triggers

where no individual chunk is ever conclusively

nH N labelled “signal® or “background”.
j=1 k=1

PQDI) % _

Make the time chunks small enough that - 4
mean number of signals per chunk <<1. false dismissal probability (1-eff.)

39
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Example analysis
Mass distribution

Estimate the mean and std. dev. of the
distribution of BNSes.

Toy example - assumes masses are measured
exactly.

x Solid lines - our method

» dashed lines - assuming all triggers are
signals

Lowering threshold leads to narrower
distributions.

A | AN
U Y
Using only triggers, get increasingly biased ..
result.

0.0 0.10 0.20 0.10 0.20
Also true for testingGR, cosmology, anything o (M)

that uses multiple signals

[Messenger & Veitch 2013]
40
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Rate estimation

_owering threshold again leads
to more precise results without
Dlas.

Rate Is special - determines

the prior odds of signal and
NoIse.

In general, inseparable from | AN
other population parameters. | f

1.0 1.5
R(x107"Mpc3Yr})

41
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-urther work ¢ o )

-
T

» Currently extending our population analysis to process
posterior samples from parameter estimation codes instead
of point estimates. | p

x Comparing parametric and non-parametric methods of

recovering the mass function of NS and BH Iin binaries [Veitch,
Messenger, Del Pozzo (in prep.)]

x Use our method to probe the actual impact of systematic
errors from waveforms In realistic scenarios.

» Gan we constrain population synthesis models?

42
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Summary ¢ o )

. -~
P
We are now developing the tools that will be used for GW

astronomy.

® Astronomy generally involves statistics of multiple’ sources.

® Searching is the first step. Detected signals are the raw ingredients
= But it must be well-understood or we will have problems later
®  Selection effects are likely to be important

® Parameter estimation for single sources is mature, and improving In
speed and capabllity

» Wil be used to feed information to more complex models

43
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