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Maxwell I

Maxwell equations:

∂tAi = −πi + ∂iφ ,

∂tπi = −∆Ai + ∂j∂iAj ,

M = ∂iπi = 0 .

Free-evolution:

• ∂tM = 0. Data satisfying
constraint, integrate in time.

Gauge-freedom:

• But φ arbitrary.

• Choice of φ is called a gauge
choice. Gauges not born
equal!

• Lorentz and other choices?

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Maxwell I

Maxwell equations:

∂tAi = −πi + ∂iφ ,

∂tπi = −∆Ai + ∂j∂iAj ,

M = ∂ iπi = 0 .

Free-evolution:

• ∂tM = 0. Data satisfying
constraint, integrate in time.

Gauge-freedom:

• But φ arbitrary.

• Choice of φ is called a gauge
choice. Gauges not born
equal!

• Lorentz and other choices?

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Maxwell I

Maxwell equations:

∂tAi = −πi + ∂iφ ,

∂tπi = −∆Ai + ∂j∂iAj ,

M = ∂ iπi = 0 .

Free-evolution:

• ∂tM = 0. Data satisfying
constraint, integrate in time.

Gauge-freedom:

• But φ arbitrary.

• Choice of φ is called a gauge
choice. Gauges not born
equal!

• Lorentz and other choices?

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Maxwell I

Maxwell equations:

∂tAi = −πi + ∂iφ ,

∂tπi = −∆Ai + ∂j∂iAj ,

M = ∂ iπi = 0 .

Free-evolution:

• ∂tM = 0. Data satisfying
constraint, integrate in time.

Gauge-freedom:

• But φ arbitrary.

• Choice of φ is called a gauge
choice. Gauges not born
equal!

• Lorentz and other choices?

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Maxwell I

Maxwell equations:

∂tAi = −πi + ∂iφ ,

∂tπi = −∆Ai + ∂j∂iAj ,

M = ∂ iπi = 0 .

Free-evolution:

• ∂tM = 0. Data satisfying
constraint, integrate in time.

Gauge-freedom:

• But φ arbitrary.

• Choice of φ is called a gauge
choice. Gauges not born
equal!

• Lorentz and other choices?

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Maxwell I

Maxwell equations:

∂tAi = −πi + ∂iφ ,

∂tπi = −∆Ai + ∂j∂iAj ,

M = ∂ iπi = 0 .

Free-evolution:

• ∂tM = 0. Data satisfying
constraint, integrate in time.

Gauge-freedom:

• But φ arbitrary.

• Choice of φ is called a gauge
choice. Gauges not born
equal!

• Lorentz and other choices?

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Maxwell I

Maxwell equations:

∂tAi = −πi + ∂iφ ,

∂tπi = −∆Ai + ∂j∂iAj ,

M = ∂ iπi = 0 .

Free-evolution:

• ∂tM = 0. Data satisfying
constraint, integrate in time.

Gauge-freedom:

• But φ arbitrary.

• Choice of φ is called a gauge
choice. Gauges not born
equal!

• Lorentz and other choices?

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Maxwell II

Expanded Maxwell equations:

∂tAi = −πi + ∂iφ ,

∂tπi = −∆Ai + ∂j∂iAj + ∂iZ ,

∂tZ = M − κZ ,
∂tφ = µφ [∂iA

i + Z ] ,

Z = 0 , M = ∂ iπi = 0 .

Free-evolution:

• ∂tM = ∆Z .

• Constraints closed as before!

Recipe for construction of
free-evolution formulations:

• Gauge choice.

• New constraints with
equations of motion.

• Add constraints to evolution
equations.

What does this look like in GR?
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Analogy with General Relativity

GR qualitatively similar:

• Spatial vector potential Ai ↔ γij spatial metric.

• Electric field πi ↔ Kij Extrinsic curvature.

• Scalar field φ ↔ α, βi Lapse and shift.

• Div constraint M ↔ H,Mi Hamiltonian and momentum
constraints.

• Free-evolution constraint Z ↔ Different options here!

We’ve summarised the ‘type’ of equations to solve, but what about
the domain?

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Analogy with General Relativity

GR qualitatively similar:

• Spatial vector potential Ai ↔ γij spatial metric.

• Electric field πi ↔ Kij Extrinsic curvature.

• Scalar field φ ↔ α, βi Lapse and shift.

• Div constraint M ↔ H,Mi Hamiltonian and momentum
constraints.

• Free-evolution constraint Z ↔ Different options here!

We’ve summarised the ‘type’ of equations to solve, but what about
the domain?

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Analogy with General Relativity

GR qualitatively similar:

• Spatial vector potential Ai ↔ γij spatial metric.

• Electric field πi ↔ Kij Extrinsic curvature.

• Scalar field φ ↔ α, βi Lapse and shift.

• Div constraint M ↔ H,Mi Hamiltonian and momentum
constraints.

• Free-evolution constraint Z ↔ Different options here!

We’ve summarised the ‘type’ of equations to solve, but what about
the domain?

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Analogy with General Relativity

GR qualitatively similar:

• Spatial vector potential Ai ↔ γij spatial metric.

• Electric field πi ↔ Kij Extrinsic curvature.

• Scalar field φ ↔ α, βi Lapse and shift.

• Div constraint M ↔ H,Mi Hamiltonian and momentum
constraints.

• Free-evolution constraint Z ↔ Different options here!

We’ve summarised the ‘type’ of equations to solve, but what about
the domain?

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Analogy with General Relativity

GR qualitatively similar:

• Spatial vector potential Ai ↔ γij spatial metric.

• Electric field πi ↔ Kij Extrinsic curvature.

• Scalar field φ ↔ α, βi Lapse and shift.

• Div constraint M ↔ H,Mi Hamiltonian and momentum
constraints.

• Free-evolution constraint Z ↔ Different options here!

We’ve summarised the ‘type’ of equations to solve, but what about
the domain?

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Analogy with General Relativity

GR qualitatively similar:

• Spatial vector potential Ai ↔ γij spatial metric.

• Electric field πi ↔ Kij Extrinsic curvature.

• Scalar field φ ↔ α, βi Lapse and shift.

• Div constraint M ↔ H,Mi Hamiltonian and momentum
constraints.

• Free-evolution constraint Z ↔ Different options here!

We’ve summarised the ‘type’ of equations to solve, but what about
the domain?

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Analogy with General Relativity

GR qualitatively similar:

• Spatial vector potential Ai ↔ γij spatial metric.

• Electric field πi ↔ Kij Extrinsic curvature.

• Scalar field φ ↔ α, βi Lapse and shift.

• Div constraint M ↔ H,Mi Hamiltonian and momentum
constraints.

• Free-evolution constraint Z ↔ Different options here!

We’ve summarised the ‘type’ of equations to solve, but what about
the domain?

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Boundary conditions in numerical relativity

Applications in numerical relativity use a truncated domain, so
boundary conditions needed for evolutions. Desirable properties?

t t+ΔΣ

tΣtS

as

al
an

t tS +Δ

• Well-posedness of the IBVP.

• Constraint preservation.

• Radiation Control.

• Implementability.
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Current status of formulations and BCs in NR

To what extent is the two-body problem numerically solved?
Compare GHG and BSSNOK:

• Excision for BHs.

• Symmetric hyperbolic.

• Constraint damping scheme.

• Wave-like constraints.

• Known to have a WP IBVP
with CP.

• Radiation controlling CPBCs
in frequent use.

• moving puncture BHs.

• Strongly hyperbolic.

• No damping scheme.

• 0-speed mode.

• WP CP IBVP with frozen
coefficients. Untested.

• Sommerfeld conditions used.
IBVP overdetermined. Not
CP.

Is there a formulation with the strengths of both?
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Conformal decomposition of Z4

A natural choice seems to be a conformal decomposition (Bernuzzi
& DH, ’09) of the Z4 formulation (Bona et. al. 04).

∂tχ =
2

3
χ[α(K̂ + 2Θ)− Diβ

i ],

∂t γ̃ij =− 2αÃij + β
k
γ̃ij,k + 2γ̃k(iβ

k
,j) −

2

3
γ̃ijβ

k
,k ,

∂t K̂ =− D iDiα + α[Ãij Ã
ij +

1

3
(K̂ + 2Θ)2]

+ 4πα[S + ρADM] + ακ1(1− κ2)Θ + β
i K̂,i

∂tΘ =α[
1

2
R −

1

2
Ãij Ã

ij +
1

3
(K̂ + 2Θ)2

− 8πρADM − κ1(2 + κ2)Θ] + LβΘ.

∂t Ãij =χ[−DiDjα + α(Rij − 8πSij )]tf

+ α[(K̂ + 2Θ)Ãij − 2Ãk
i Ãkj ]

+ β
k Ãij,k + Ãikβ

k
,j −

2

3
Ãijβ

k
,k

∂t Γ̃i =− 2Ãij
α,j + 2α[Γ̃ijk Ã

jk −
3

2
Ãij ln(χ),j

−
1

3
γ̃
ij (2K̂ + Θ),j − 8πγ̃ ijSj ] + γ̃

jk
β
i
,jk

+
1

3
γ̃
ij
β
k
,kj + β

j Γ̃i,j − Γ̃d
j
β
i
,j +

2

3
Γ̃d

i
β
j
,j

− 2ακ1(Γ̃i − Γ̃d
i ).

• Strongly hyperbolic with puncture gauge.

• Wave-like constraint subsystem.

• Constraint damping scheme.
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k
γ̃ij,k + 2γ̃k(iβ

k
,j) −

2

3
γ̃ijβ

k
,k ,

∂t K̂ =− D iDiα + α[Ãij Ã
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i Ãkj ]

+ β
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Ãij Ã
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Radiation controlling CPBCs

The trivial structure of the constraint subsystem was used to
construct constraint absorbing preserving boundary conditions
(Ruiz et. al. ’10).

(la∂a)LΘ =̂ 0 , (la∂a)LZ̃ i =̂ 0 .

With GW controlling condition:

(la∂a)L−1Ψ0 =̂ ∂2
t hΨ0 .

[Recall for incoming GWs, Ψ0 ∼ ḧ+ + i ḧ×.]
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Recipe for BCs implementation

Implementation?

• Conformal decomposition.

• Populate ghostzones.

• Standard bulk FDs at
Boundary.

• Normal EoMs for metric.

Do they work?

∂tΘ =̂ − α (∂sΘ + 1
r

Θ) + β
i
∂iΘ ,

∂t Ãss =̂ − αχ
{

2 D̃ i Ãis −
2

3
D̃s (2 K̂ + Θ)−

2

3
Rss
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3
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[
Γ̃s − (Γ̃d)s
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1

3
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3
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2

3
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1

3
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∂t Ã
TF
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D̃s ÃAB − D̃(AÃB)s +

1

2
Ãs(AD̃B)(lnχ)

−
1

2
ÃAB D̃s (lnχ) + Ãi

A ÃiB −
2

3
ÃAB (K̂ + 2Θ)

]TF

− χDAD
TF
B α + Lβ Ã

TF
AB .
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s Ãis
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A ÃiB −
2

3
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Spherical symmetry I

First applications:
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BSSN Z4 k=0 Z4 k=0.02 H(t=0)) • The zero speed mode in the
BSSNOK constraint
subsystem (Beyer & Sarbach
’02, Gundlach & M Garcia
’04) causes Hamiltonian
constraint violation. Z4c
does not suffer from the
problem.
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Spherical symmetry II

CPBCs with Spherical numerics:
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• A detailed examination of
the constraint damping
scheme was presented in
spherical symmetry
(Weyhausen et. al. ‘11).

• Evolutions of binary black
holes were presented using a
variation of the conformal
decomposition called CCZ4
(Alic et. al. ‘11).
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Boundary kick in spherical symmetry

Is it really worth making better boundary conditions?
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• Consider central density in
evolution of single TOV star.

• Sommerfeld gives
perturbation. Does not
converge away with
resolution. BCs can effect
physics.

• Example maximises effect.
Boundaries close.
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Single puncture black hole

• Incoming violation as
Sommerfeld boundary
causally connected.

• CPBCs reduce violation.

• At late times BSSNOK
has large violation sitting
at boundary.
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Boundary kick in 3D

• Incoming violation kicks
star like in spherical
symmetry.

• Effect tiny compared to
that in spherical
symmetry.

• Does not converge away.
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Binary Neutron Stars I

• Hamiltonian constraint
violation reduced in Z4c
data.

• Growth in constraint
after merger with either
formulation.

0 100 200 300 400 500 600
10

−7

10
−6

10
−5

10
−4

10
−3

t/M

||H
am

|| 2

 

 

Z4c

BSSNOK

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Binary Neutron Stars I

• Hamiltonian constraint
violation reduced in Z4c
data.

• Growth in constraint
after merger with either
formulation.

0 100 200 300 400 500 600
10

−7

10
−6

10
−5

10
−4

10
−3

t/M

||H
am

|| 2

 

 

Z4c

BSSNOK

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Binary Neutron Stars I

• Hamiltonian constraint
violation reduced in Z4c
data.

• Growth in constraint
after merger with either
formulation.

0 100 200 300 400 500 600
10

−7

10
−6

10
−5

10
−4

10
−3

t/M

||H
am

|| 2

 

 

Z4c

BSSNOK

David Hilditch The development of the Z4c formulation for numerical relativity



Background Single compact objects Compact binary evolutions Conclusions

Binary Neutron Stars II

• ADM mass
integral BSSNOK.

• Noise after outgoing
signal reaches extraction
sphere.
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Binary Neutron Stars II

• ADM mass integral Z4c.

• Integral plus emitted GW
energy constant.
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Binary Neutron Stars III

Angular momentum type integral:
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Binary Neutron Stars IV

Accuracy in GW phase
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Summary

• Z4c constructed to bring the strengths of GHG to moving
puncture method.

• Large improvement over BSSNOK in terms of Hamiltonian
constraint violation.

• CPBCs give improvement over BSSNOK with Sommerfeld in
mass and angular momentum conservation.

• Improvement in GW error a factor between roughly 2 and 4.
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