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Gauge-freedom:
e But ¢ arbitrary.

e Choice of ¢ is called a gauge
choice. Gauges not born
equal!

e Lorentz and other choices?
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Expanded Maxwell equations:

0tAi = —mi + 0;9,
O = —AA; +8j3;Aj + 0,7,
HWZ=M—-KZ,
0 = 11y [0:A" + 2],
Z=0, M=98r=0.
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Expanded Maxwell equations:
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Expanded Maxwell equations:

O Aj = —mi + 0i Recipe for construction of
Ot — — DA+ DOA; + 07 free-evolution formulations:
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Expanded Maxwell equations:

OAj = —mi + 0i¢,
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Recipe for construction of
free-evolution formulations:

e Gauge choice.
e New constraints with
equations of motion.

e Add constraints to evolution
equations.
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Expanded Maxwell equations:

0tA; = —m; + 0;¢, Recipe for construction of
Ot = —AA L HOA: 1+ 0.7 free-evolution formulations:
tihhy — — 1 1 1<
0.7 =M—rZ ! e Gauge choice.
t& — - )

_ A e New constraints with
0t6 =t [0iA"+ 21, equations of motion.

Z=0, M=0nm=0. e Add constraints to evolution

equations.
What does this look like in GR?

Free-evolution:
e O:M = AZ.

e Constraints closed as before!
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Analogy with General Relativity

GR qualitatively similar:

Spatial vector potential A; <+ «;; spatial metric.

Electric field 7; <+ Kj; Extrinsic curvature.
Scalar field ¢ <> o, 8" Lapse and shift.

e Div constraint M < H, M; Hamiltonian and momentum
constraints.

e Free-evolution constraint Z <> Different options here!

We've summarised the ‘type’ of equations to solve, but what about
the domain?
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Boundary conditions in numerical relativity

Applications in numerical relativity use a truncated domain, so
boundary conditions needed for evolutions. Desirable properties?

domain of
dependence

David Hilditch




Boundary conditions in numerical relativity

Applications in numerical relativity use a truncated domain, so
boundary conditions needed for evolutions. Desirable properties?

e Well-posedness of the IBVP.

domain of
dependence

David Hilditch



Boundary conditions in numerical relativity

Applications in numerical relativity use a truncated domain, so
boundary conditions needed for evolutions. Desirable properties?

e Well-posedness of the IBVP.

e Constraint preservation.

domain of
dependence

David Hilditch



Boundary conditions in numerical relativity

Applications in numerical relativity use a truncated domain, so
boundary conditions needed for evolutions. Desirable properties?

e Well-posedness of the IBVP.
e Constraint preservation.
T e Radiation Control.

domain of
dependence

David Hilditch



Boundary conditions in numerical relativity

Applications in numerical relativity use a truncated domain, so
boundary conditions needed for evolutions. Desirable properties?

Well-posedness of the IBVP.

Constraint preservation.

domain of
dependence

\‘{
L]

Radiation Control.

Implementability.
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e No damping scheme.
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Current status of formulations and BCs in NR

To what extent is the two-body problem numerically solved?

Compare GHG and BSSNOK:

o Excision for BHs.

e Symmetric hyperbolic.

e Constraint damping scheme.
e Wave-like constraints.

e Known to have a WP IBVP
with CP.

e Radiation controlling CPBCs
in frequent use.

Is there a formulation with the strengths of both?
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moving puncture BHs.
Strongly hyperbolic.
No damping scheme.
0-speed mode.

WP CP IBVP with frozen
coefficients. Untested.
Sommerfeld conditions used.

IBVP overdetermined. Not
CP.




Conformal decomposition of Z4

A natural choice seems to be a conformal decomposition (Bernuzzi
& DH, '09) of the Z4 formulation (Bona et. al. 04).
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Radiation controlling CPBCs

The trivial structure of the constraint subsystem was used to

construct constraint absorbing preserving boundary conditions
(Ruiz et. al. '10).

(1F9,)te =0, (1F9,)tz7=0.
With GW controlling condition:
(170,) " Wo £ 92 hy,.

[Recall for incoming GWs, Wo ~ ht + i h* ]
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Recipe for BCs implementation
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Spherical symmetry |

First applications:

© sz zeicon =) e The zero speed mode in the
BSSNOK constraint
— 10° w subsystem (Beyer & Sarbach
g ' '02, Gundlach & M Garcia
i?» i : e SR ::;::‘f '04) causes Hamiltonian
£ 9 constraint violation. Z4c
B does not suffer from the
problem.
107
0 5 R;-d?us 15 20
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Spherical symmetry Il

CPBCs with Spherical numerics:
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Spherical symmetry I

CPBCs with Spherical numerics:
e A detailed examination of

the constraint damping
scheme was presented in
spherical symmetry
(Weyhausen et. al. ‘11).

] e e e
0 S E
-2 [ ‘ Sommerfeld l
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Spherical symmetry I

CPBCs with Spherical numerics:
e A detailed examination of

the constraint damping

107 T T T .
102 BV Sommerfeld —~—~- ] scheme was presented in
[ \ 2nd CP .
103 F 3 spherical symmetry
4 i
IO F (Weyhausen et. al. ‘11).
107 £ . .
=00 b e Evolutions of binary black
107 F holes were presented using a
-8 L « L.
o variation of the conformal
107 & | | | | | | |

0 50 100 150 200 250 300 350 400 deC.omp05|t|o‘n called CCZ4
Time (Alic et. al. '11).
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o Consider central density in
evolution of single TOV star.
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Boundary kick in spherical symmetry

Is it really worth making better boundary conditions?
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o Consider central density in
evolution of single TOV star.

e Sommerfeld gives
perturbation. Does not
converge away with
resolution. BCs can effect
physics.

e Example maximises effect.
Boundaries close.




Single puncture black hole
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Single puncture black hole
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Single puncture black hole
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Boundary kick in 3D
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o ADM mass integral Z4c.
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Summary

e Z4c constructed to bring the strengths of GHG to moving
puncture method.

e Large improvement over BSSNOK in terms of Hamiltonian
constraint violation.

e CPBCs give improvement over BSSNOK with Sommerfeld in
mass and angular momentum conservation.

e Improvement in GW error a factor between roughly 2 and 4.
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