The development of the Z4c formulation for numerical relativity

David Hilditch with Sebastiano Bernuzzi, Milton Ruiz, Marcus Thierfelder, Andreas Weyhausen, Zhoujian Cao, Wolfgang Tichy and Bernd Brügmann

Friedrich-Schiller-Universität Jena

arXiv:{0912.2920, 1010.0523, 1107.5539, 1111.2177, 1212.2901},

(人間) (人) (人) (人)

A B > A
 A
 B > A
 A

Conclusions

Background

Single compact objects

Compact binary evolutions

Conclusions

David Hilditch

æ

・ロ・ ・回・ ・ヨ・ ・ヨ・

David Hilditch

Maxwell I

Maxwell equations:

$$\begin{split} \partial_t A_i &= -\pi_i + \partial_i \phi \,, \\ \partial_t \pi_i &= -\Delta A_i + \partial^j \partial_i A_j \,, \\ M &= \partial^i \pi_i = 0 \,. \end{split}$$

æ

・ロ・・ (日・・ (日・・ (日・)

Maxwell I

Maxwell equations:

$$\begin{aligned} \partial_t A_i &= -\pi_i + \partial_i \phi \,, \\ \partial_t \pi_i &= -\Delta A_i + \partial^j \partial_i A_j \,, \\ M &= \partial^i \pi_i = 0 \,. \end{aligned}$$

Free-evolution:

∂_tM = 0. Data satisfying constraint, integrate in time.

3

イロト イヨト イヨト イヨト

Maxwell I

Maxwell equations:

$$\begin{aligned} \partial_t A_i &= -\pi_i + \partial_i \phi \,, \\ \partial_t \pi_i &= -\Delta A_i + \partial^j \partial_i A_j \,, \\ M &= \partial^i \pi_i = 0 \,. \end{aligned}$$

∃ ► < ∃ ►</p>

Free-evolution:

∂_tM = 0. Data satisfying constraint, integrate in time.

Maxwell I

Maxwell equations:

$$\partial_t A_i = -\pi_i + \partial_i \phi$$
,
 $\partial_t \pi_i = -\Delta A_i + \partial^j \partial_i A_j$,
 $M = \partial^i \pi_i = 0$.

Gauge-freedom:

• But ϕ arbitrary.

• • • •

Free-evolution:

∂_tM = 0. Data satisfying constraint, integrate in time.

-≣->

Maxwell I

Maxwell equations:

$$\begin{split} \partial_t A_i &= -\pi_i + \partial_i \phi \,, \\ \partial_t \pi_i &= -\Delta A_i + \partial^j \partial_i A_j \,, \\ M &= \partial^i \pi_i = 0 \,. \end{split}$$

Free-evolution:

∂_tM = 0. Data satisfying constraint, integrate in time.

Gauge-freedom:

- But ϕ arbitrary.
- Choice of φ is called a gauge choice. Gauges not born equal!

• • • • •

-≣->

Maxwell I

Maxwell equations:

$$\begin{aligned} \partial_t A_i &= -\pi_i + \partial_i \phi \,, \\ \partial_t \pi_i &= -\Delta A_i + \partial^j \partial_i A_j \,, \\ M &= \partial^i \pi_i = 0 \,. \end{aligned}$$

Free-evolution:

∂_tM = 0. Data satisfying constraint, integrate in time.

Gauge-freedom:

- But ϕ arbitrary.
- Choice of \(\phi\) is called a gauge choice. Gauges not born equal!
- Lorentz and other choices?

A ■

≣ >

æ

・ロン ・雪と ・目と ・目と

David Hilditch

Maxwell II

Expanded Maxwell equations:

$$\begin{aligned} \partial_t A_i &= -\pi_i + \partial_i \phi \,, \\ \partial_t \pi_i &= -\Delta A_i + \partial^j \partial_i A_j + \partial_i Z \,, \\ \partial_t Z &= M - \kappa Z \,, \\ \partial_t \phi &= \mu_\phi \left[\partial_i A^i + Z \right] , \\ Z &= 0 \,, \quad M = \partial^i \pi_i = 0 \,. \end{aligned}$$

æ

・ロト ・回ト ・ヨト ・ヨト

A B > A
 A
 B > A
 A

프 🖌 🛪 프 🕨

Conclusions

Maxwell II

Expanded Maxwell equations:

$$\begin{aligned} \partial_t A_i &= -\pi_i + \partial_i \phi \,, \\ \partial_t \pi_i &= -\Delta A_i + \partial^j \partial_i A_j + \partial_i Z \,, \\ \partial_t Z &= M - \kappa Z \,, \\ \partial_t \phi &= \mu_\phi \left[\partial_i A^i + Z \right] , \\ Z &= 0 \,, \quad M = \partial^i \pi_i = 0 \,. \end{aligned}$$

Free-evolution:

- $\partial_t M = \Delta Z$.
- Constraints closed as before!

Maxwell II

Expanded Maxwell equations:

$$\begin{aligned} \partial_t A_i &= -\pi_i + \partial_i \phi \,, \\ \partial_t \pi_i &= -\Delta A_i + \partial^j \partial_i A_j + \partial_i Z \,, \\ \partial_t Z &= M - \kappa Z \,, \\ \partial_t \phi &= \mu_\phi \left[\partial_i A^i + Z \right] , \\ Z &= 0 \,, \quad M = \partial^i \pi_i = 0 \,. \end{aligned}$$

Recipe for construction of free-evolution formulations:

Free-evolution:

- $\partial_t M = \Delta Z$.
- Constraints closed as before!

Maxwell II

Expanded Maxwell equations:

$$\begin{aligned} \partial_t A_i &= -\pi_i + \partial_i \phi \,, \\ \partial_t \pi_i &= -\Delta A_i + \partial^j \partial_i A_j + \partial_i Z \,, \\ \partial_t Z &= M - \kappa Z \,, \\ \partial_t \phi &= \mu_\phi \left[\partial_i A^i + Z \right] \,, \\ Z &= 0 \,, \quad M = \partial^i \pi_i = 0 \,. \end{aligned}$$

Free-evolution:

- $\partial_t M = \Delta Z$.
- Constraints closed as before!

Recipe for construction of free-evolution formulations:

• Gauge choice.

Maxwell II

Expanded Maxwell equations:

$$\begin{aligned} \partial_t A_i &= -\pi_i + \partial_i \phi \,, \\ \partial_t \pi_i &= -\Delta A_i + \partial^j \partial_i A_j + \partial_i Z \,, \\ \partial_t Z &= M - \kappa Z \,, \\ \partial_t \phi &= \mu_\phi \left[\partial_i A^i + Z \right] , \\ Z &= 0 \,, \quad M = \partial^i \pi_i = 0 \,. \end{aligned}$$

Free-evolution:

- $\partial_t M = \Delta Z$.
- Constraints closed as before!

Recipe for construction of free-evolution formulations:

- Gauge choice.
- New constraints with equations of motion.

< 17 > 4

3 ×

-≣->

Maxwell II

Expanded Maxwell equations:

$$\begin{aligned} \partial_t A_i &= -\pi_i + \partial_i \phi \,, \\ \partial_t \pi_i &= -\Delta A_i + \partial^j \partial_i A_j + \partial_i Z \,, \\ \partial_t Z &= M - \kappa Z \,, \\ \partial_t \phi &= \mu_\phi \left[\partial_i A^i + Z \right] , \\ Z &= 0 \,, \quad M = \partial^i \pi_i = 0 \,. \end{aligned}$$

Free-evolution:

• $\partial_t M = \Delta Z$.

• Constraints closed as before!

Recipe for construction of free-evolution formulations:

- Gauge choice.
- New constraints with equations of motion.
- Add constraints to evolution equations.

• • • • •

3 ×

Maxwell II

Expanded Maxwell equations:

$$\begin{aligned} \partial_t A_i &= -\pi_i + \partial_i \phi \,, \\ \partial_t \pi_i &= -\Delta A_i + \partial^j \partial_i A_j + \partial_i Z \,, \\ \partial_t Z &= M - \kappa Z \,, \\ \partial_t \phi &= \mu_\phi \left[\partial_i A^i + Z \right] , \\ Z &= 0 \,, \quad M = \partial^i \pi_i = 0 \,. \end{aligned}$$

Free-evolution:

- $\partial_t M = \Delta Z$.
- Constraints closed as before!

Recipe for construction of free-evolution formulations:

- Gauge choice.
- New constraints with equations of motion.
- Add constraints to evolution equations.

What does this look like in GR?

• • • • •

3 ×

Analogy with General Relativity

GR qualitatively similar:

Э

イロン イヨン イヨン イヨン

David Hilditch

GR qualitatively similar:

• Spatial vector potential $A_i \leftrightarrow \gamma_{ij}$ spatial metric.

イロン イヨン イヨン イヨン

GR qualitatively similar:

- Spatial vector potential $A_i \leftrightarrow \gamma_{ij}$ spatial metric.
- Electric field $\pi_i \leftrightarrow K_{ij}$ Extrinsic curvature.

GR qualitatively similar:

- Spatial vector potential $A_i \leftrightarrow \gamma_{ij}$ spatial metric.
- Electric field $\pi_i \leftrightarrow K_{ij}$ Extrinsic curvature.
- Scalar field $\phi \leftrightarrow \alpha, \beta^i$ Lapse and shift.

・ロト ・日本 ・モート ・モート

GR qualitatively similar:

- Spatial vector potential $A_i \leftrightarrow \gamma_{ij}$ spatial metric.
- Electric field $\pi_i \leftrightarrow K_{ij}$ Extrinsic curvature.
- Scalar field $\phi \leftrightarrow \alpha, \beta^i$ Lapse and shift.
- Div constraint $M \leftrightarrow H, M_i$ Hamiltonian and momentum constraints.

・ロト ・日本 ・モート ・モート

GR qualitatively similar:

- Spatial vector potential $A_i \leftrightarrow \gamma_{ij}$ spatial metric.
- Electric field $\pi_i \leftrightarrow K_{ij}$ Extrinsic curvature.
- Scalar field $\phi \leftrightarrow \alpha, \beta^i$ Lapse and shift.
- Div constraint $M \leftrightarrow H, M_i$ Hamiltonian and momentum constraints.
- Free-evolution constraint $Z \leftrightarrow$ Different options here!

・ロト ・日本 ・モート ・モート

GR qualitatively similar:

- Spatial vector potential $A_i \leftrightarrow \gamma_{ij}$ spatial metric.
- Electric field $\pi_i \leftrightarrow K_{ij}$ Extrinsic curvature.
- Scalar field $\phi \leftrightarrow \alpha, \beta^i$ Lapse and shift.
- Div constraint $M \leftrightarrow H, M_i$ Hamiltonian and momentum constraints.
- Free-evolution constraint $Z \leftrightarrow$ Different options here!

We've summarised the 'type' of equations to solve, but what about the domain?

Boundary conditions in numerical relativity

Boundary conditions in numerical relativity

Applications in numerical relativity use a truncated domain, so boundary conditions needed for evolutions. Desirable properties?

• Well-posedness of the IBVP.

Boundary conditions in numerical relativity

- Well-posedness of the IBVP.
- Constraint preservation.

Boundary conditions in numerical relativity

- Well-posedness of the IBVP.
- Constraint preservation.
- Radiation Control.

Boundary conditions in numerical relativity

- Well-posedness of the IBVP.
- Constraint preservation.
- Radiation Control.
- Implementability.

Current status of formulations and BCs in NR

To what extent is the two-body problem numerically solved? Compare GHG and BSSNOK:

3

イロン イヨン イヨン イヨン

Current status of formulations and BCs in NR

To what extent is the two-body problem numerically solved? Compare GHG and BSSNOK:

• Excision for BHs.

• moving puncture BHs.

・ロト ・日下・ ・ ヨト・

.⊒ .⊳

Current status of formulations and BCs in NR

To what extent is the two-body problem numerically solved? Compare GHG and BSSNOK:

- Excision for BHs.
- Symmetric hyperbolic.

• moving puncture BHs.

• • • •

31.1€

• Strongly hyperbolic.

Current status of formulations and BCs in NR

To what extent is the two-body problem numerically solved? Compare GHG and BSSNOK:

- Excision for BHs.
- Symmetric hyperbolic.
- Constraint damping scheme.

- moving puncture BHs.
- Strongly hyperbolic.
- No damping scheme.

Current status of formulations and BCs in NR

To what extent is the two-body problem numerically solved? Compare GHG and BSSNOK:

- Excision for BHs.
- Symmetric hyperbolic.
- Constraint damping scheme.
- Wave-like constraints.

- moving puncture BHs.
- Strongly hyperbolic.
- No damping scheme.

• 0-speed mode.

Current status of formulations and BCs in NR

To what extent is the two-body problem numerically solved? Compare GHG and BSSNOK:

- Excision for BHs.
- Symmetric hyperbolic.
- Constraint damping scheme.
- Wave-like constraints.
- Known to have a WP IBVP with CP.

- moving puncture BHs.
- Strongly hyperbolic.
- No damping scheme.

• • • • • • • •

- 0-speed mode.
- WP CP IBVP with frozen coefficients. Untested.

Current status of formulations and BCs in NR

To what extent is the two-body problem numerically solved? Compare GHG and BSSNOK:

- Excision for BHs.
- Symmetric hyperbolic.
- Constraint damping scheme.
- Wave-like constraints.
- Known to have a WP IBVP with CP.
- Radiation controlling CPBCs in frequent use.

- moving puncture BHs.
- Strongly hyperbolic.
- No damping scheme.
- 0-speed mode.
- WP CP IBVP with frozen coefficients. Untested.
- Sommerfeld conditions used. IBVP overdetermined. Not CP.

Current status of formulations and BCs in NR

To what extent is the two-body problem numerically solved? Compare GHG and BSSNOK:

- Excision for BHs.
- Symmetric hyperbolic.
- Constraint damping scheme.
- Wave-like constraints.
- Known to have a WP IBVP with CP.
- Radiation controlling CPBCs in frequent use.

- moving puncture BHs.
- Strongly hyperbolic.
- No damping scheme.
- 0-speed mode.
- WP CP IBVP with frozen coefficients. Untested.
- Sommerfeld conditions used. IBVP overdetermined. Not CP.

・ロッ ・回 ・ ・ ヨッ ・

20155

∃ >

Is there a formulation with the strengths of both?

Conformal decomposition of Z4

A natural choice seems to be a conformal decomposition (Bernuzzi & DH, '09) of the Z4 formulation (Bona et. al. 04).

$$\begin{split} \partial_t \chi &= \frac{2}{3} \chi [\alpha(\hat{K} + 2\Theta) - D_i \beta^i], \\ \partial_t \tilde{\gamma}_{ij} &= -2 \alpha \tilde{A}_{ij} + \beta^k \tilde{\gamma}_{ij,k} + 2 \tilde{\gamma}_{k(i} \beta^k_{,j)} - \frac{2}{3} \tilde{\gamma}_{ij} \beta^k_{,k} , \\ \partial_t \hat{K} &= -D^i D_i \alpha + \alpha [\tilde{A}_{ij} \tilde{A}^{ij} + \frac{1}{3} (\hat{K} + 2\Theta)^2] \\ &+ 4 \pi \alpha [S + \rho_{ADM}] + \alpha \kappa_1 (1 - \kappa_2) \Theta + \beta^i \hat{K}, \\ \partial_t \Theta &= \alpha [\frac{1}{2} R - \frac{1}{2} \tilde{A}_{ij} \tilde{A}^{ij} + \frac{1}{3} (\hat{K} + 2\Theta)^2 \\ &- 8 \pi \rho_{ADM} - \kappa_1 (2 + \kappa_2) \Theta] + \mathcal{L}_\beta \Theta. \end{split}$$

$$\begin{split} \partial_t \tilde{\lambda}_{ij} = &\chi [-D_i D_j \alpha + \alpha (R_{ij} - 8 \pi S_{ij})]^{\text{tf}} \\ &+ \alpha [(\hat{K} + 2\Theta) \tilde{\lambda}_{ij} - 2 \tilde{\lambda}^k{}_i \tilde{\lambda}_{kj}] \\ &+ \beta^k \tilde{\lambda}_{ij,k} + \tilde{\lambda}_{ik} \beta^k{}_{,j} - \frac{2}{3} \tilde{\lambda}_{ij} \beta^k{}_{,k} \\ \partial_t \tilde{\Gamma}^i = &- 2 \tilde{A}^{ij} \alpha{}_{,j} + 2 \alpha [\tilde{\Gamma}^i_{jk} \tilde{A}^{jk} - \frac{3}{2} \tilde{A}^{ij} \ln(\chi){}_{,j} \\ &- \frac{1}{3} \tilde{\gamma}^{ij} (2 \hat{K} + \Theta){}_{,j} - 8 \pi \tilde{\gamma}^{ij} S_j] + \tilde{\gamma}^{jk} \beta^i{}_{,jk} \\ &+ \frac{1}{3} \tilde{\gamma}^{ij} \beta^k{}_{,kj} + \beta^j \tilde{\Gamma}^i{}_{,j} - \tilde{\Gamma}_d{}^j \beta^i{}_{,j} + \frac{2}{3} \tilde{\Gamma}_d{}^i \beta^j{}_{,j} \\ &- 2 \alpha \kappa_1 (\tilde{\Gamma}^i - \tilde{\Gamma}_d{}^i). \end{split}$$

イロト イヨト イヨト イヨト

. .

イロト イポト イヨト イヨト

Conformal decomposition of Z4

A natural choice seems to be a conformal decomposition (Bernuzzi & DH, '09) of the Z4 formulation (Bona et. al. 04).

$$\begin{aligned} \partial_t \chi &= \frac{2}{3} \chi [\alpha(\hat{k} + 2\Theta) - D_i \beta^i], \\ \partial_t \tilde{\gamma}_{ij} &= -2\alpha \tilde{\lambda}_{ij} + \beta^k \tilde{\gamma}_{ij,k} + 2\tilde{\gamma}_{k(i} \beta^k_{,j)} - \frac{2}{3} \tilde{\gamma}_{ij} \beta^k_{,k} , \\ \partial_t \tilde{\kappa} &= -D^i D_i \alpha + \alpha [\tilde{\lambda}_{ij} \tilde{\lambda}^{ij} + \frac{1}{3} (\hat{k} + 2\Theta)^2] \\ &+ 4\pi \alpha [S + \rho_{\rm ADM}] + \alpha \kappa_1 (1 - \kappa_2) \Theta + \beta^i \tilde{\kappa}_{,i} \\ \partial_t \Theta &= \alpha [\frac{1}{2}R - \frac{1}{2} \tilde{\lambda}_{ij} \tilde{\lambda}^{ij} + \frac{1}{3} (\hat{k} + 2\Theta)^2 \\ &- 8\pi \rho_{\rm ADM} - \kappa_1 (2 + \kappa_2) \Theta] + \mathcal{L}_{\beta} \Theta. \end{aligned}$$

• Strongly hyperbolic with puncture gauge.

. .

イロト イポト イヨト イヨト

Conformal decomposition of Z4

A natural choice seems to be a conformal decomposition (Bernuzzi & DH, '09) of the Z4 formulation (Bona et. al. 04).

$$\begin{aligned} \partial_{t}\chi &= \frac{2}{3}\chi[\alpha(\hat{K}+2\Theta) - D_{i}\beta^{i}], \\ \partial_{t}\tilde{\chi} &= \frac{2}{3}\chi_{ij} + \beta^{k}\tilde{\chi}_{ij,k} + 2\tilde{\gamma}_{k(i}\beta^{k}_{,j)} - \frac{2}{3}\tilde{\gamma}_{ij}\beta^{k}_{,k}, \\ \partial_{t}\hat{K} &= -D^{i}D_{i}\alpha + \alpha[\tilde{A}_{ij}\tilde{\chi}^{ij}] + \frac{1}{3}(\hat{K}+2\Theta)^{2}] \\ &+ 4\pi\alpha[S + \rho_{ADM}] + \alpha\kappa_{1}(1 - \kappa_{2})\Theta + \beta^{i}\tilde{K}_{,i} \\ \partial_{t}\Theta &= \alpha[\frac{1}{2}R - \frac{1}{2}\tilde{A}_{ij}\tilde{\chi}^{ij} + \frac{1}{3}(\hat{K}+2\Theta)^{2} \\ &- 8\pi\rho_{ADM} - \kappa_{1}(2 + \kappa_{2})\Theta] + \mathcal{L}_{\beta}\Theta. \end{aligned}$$

$$\begin{aligned} \partial_{t}A_{ij} &= \chi[-D_{i}D_{j}\alpha + \alpha(R_{ij} - 8\piS_{ij})]^{1} \\ &+ \alpha[(\hat{K}+2\Theta)\tilde{A}_{ij}] \\ &+ \beta^{k}\tilde{A}_{ij,k} + \tilde{A}_{ik}\beta^{k}_{,j} - \frac{2}{3}\tilde{A}_{ij}\beta^{k}_{,k} \\ &- \frac{2}{3}\tilde{A}_{ij}\beta^{k}_{,k} - \frac{2}{3}\tilde{A}_{ij}\beta^{k}_{,k} \\ &- \frac{1}{3}\tilde{\gamma}^{ij}(2\hat{K} + \Theta)_{,j} - 8\pi\tilde{\gamma}^{ij}S_{,j}] + \tilde{\gamma}^{ik}\beta^{i}_{,jk} \\ &+ \frac{1}{3}\tilde{\gamma}^{ij}\beta^{k}_{,kj} + \beta^{i}\tilde{\Gamma}_{,j} - \tilde{\Gamma}_{d}^{i}\beta^{i}_{,j} + \frac{2}{3}\tilde{\Gamma}_{d}^{i}\beta^{j}_{,j} \\ &- 2\alpha\kappa_{1}(\tilde{\Gamma}^{i} - \tilde{\Gamma}_{d}^{i}). \end{aligned}$$

- Strongly hyperbolic with puncture gauge.
- Wave-like constraint subsystem.

. .

イロト イヨト イヨト イヨト

Conformal decomposition of Z4

A natural choice seems to be a conformal decomposition (Bernuzzi & DH, '09) of the Z4 formulation (Bona et. al. 04).

- Strongly hyperbolic with puncture gauge.
- Wave-like constraint subsystem.
- Constraint damping scheme.

Radiation controlling CPBCs

The trivial structure of the constraint subsystem was used to construct constraint absorbing preserving boundary conditions (Ruiz et. al. '10).

$$(I^a\partial_a)^L\Theta \stackrel{\circ}{=} 0, \qquad (I^a\partial_a)^L\tilde{Z}^i \stackrel{\circ}{=} 0.$$

With GW controlling condition:

$$(I^a\partial_a)^{L-1}\Psi_0 = \partial_t^2 h_{\Psi_0}.$$

[Recall for incoming GWs, $\Psi_0 \sim \ddot{h}^+ + i \, \ddot{h}^{\times}$.]

イロン イヨン イヨン イヨン

Recipe for BCs implementation

Implementation?

Э

イロン イヨン イヨン イヨン

David Hilditch

Implementation?

• Conformal decomposition.

$$\begin{split} \partial_t \Theta &= -\alpha \left(\partial_s \Theta + \frac{1}{r} \Theta \right) + \beta^i \partial_i \Theta \,, \\ \partial_t \tilde{A}_{ss} &= -\alpha \, \chi \, \left\{ 2 \, \tilde{D}^i \tilde{A}_{is} - \frac{2}{3} \, \tilde{D}_s (2 \, \hat{K} + \Theta) - \frac{2}{3} \, R_{ss} \right. \\ &+ \frac{2}{3} \, \chi \, \partial_s \left[\tilde{\Gamma}^s - (\tilde{\Gamma}_d)^s \right] - \frac{1}{3} \, \chi \, \partial_A \left[\tilde{\Gamma}^A - (\tilde{\Gamma}_d)^A \right] \\ &+ \frac{1}{3} \, R_{qq} - 3 \, \tilde{D}^i (\ln \chi) \tilde{A}_{is} - \kappa_1 \, \left[\tilde{\Gamma}_s - (\tilde{\Gamma}_d)_s \right] \right\} \\ &+ \alpha \, \left[\tilde{A}_{ss} \left(\hat{K} + 2 \Theta \right) - 2 \, \tilde{A}^i_s \, \tilde{A}_{is} \right] - \frac{2}{3} \, \chi \, D_s D_s \alpha \\ &+ \frac{1}{3} \, \chi \, D^A D_A \alpha + \mathcal{L}_\beta \, \tilde{A}_{ss} \,, \\ \partial_t \tilde{A}_{AB}^{TF} &= - \alpha \left[\tilde{D}_s \tilde{A}_{AB} - \tilde{D}_{(A} \tilde{A}_{B)s} + \frac{1}{2} \, \tilde{A}_{s(A} \tilde{D}_B) (\ln \chi) \\ &- \frac{1}{2} \, \tilde{A}_{AB} \tilde{D}_s (\ln \chi) + \tilde{A}^i_A \, \tilde{A}_{iB} - \frac{2}{3} \, \tilde{A}_{AB} \left(\hat{K} + 2 \Theta \right) \right]^{TF} \\ &- \chi \, D_A D_B^{TF} \alpha + \mathcal{L}_\beta \, \tilde{A}_{AB}^{TF} \,. \end{split}$$

• • • • •

프 🖌 🛪 프 🕨

3

Implementation?

- Conformal decomposition.
- Populate ghostzones.

$$\begin{split} \partial_t \Theta &\doteq -\alpha \left(\partial_s \Theta + \frac{1}{r} \Theta \right) + \beta^i \, \partial_i \Theta \,, \\ \partial_t \tilde{A}_{ss} &\doteq -\alpha \, \chi \, \left\{ 2 \, \tilde{D}^i \tilde{A}_{is} - \frac{2}{3} \, \tilde{D}_s (2 \, \hat{K} + \Theta) - \frac{2}{3} \, R_{ss} \right. \\ &+ \frac{2}{3} \chi \, \partial_s \left[\tilde{\Gamma}^s - (\tilde{\Gamma}_d)^s \right] - \frac{1}{3} \chi \, \partial_A \left[\tilde{\Gamma}^A - (\tilde{\Gamma}_d)^A \right] \\ &+ \frac{1}{3} \, R_{qq} - 3 \, \tilde{D}^i (\ln \chi) \tilde{A}_{is} - \kappa_1 \, \left[\tilde{\Gamma}_s - (\tilde{\Gamma}_d)_s \right] \right\} \\ &+ \alpha \, \left[\tilde{A}_{ss} \left(\hat{K} + 2 \Theta \right) - 2 \, \tilde{A}^i_s \, \tilde{A}_{is} \right] - \frac{2}{3} \, \chi \, D_s D_s \alpha \\ &+ \frac{1}{3} \, \chi \, D^A D_A \alpha + \mathcal{L}_\beta \, \tilde{A}_{ss} \,, \\ \partial_t \tilde{A}_{AB}^{\mathrm{TF}} &\doteq - \alpha \left[\tilde{D}_s \tilde{A}_{AB} - \tilde{D}_{(A} \tilde{A}_{B)s} + \frac{1}{2} \, \tilde{A}_{s(A} \tilde{D}_B) (\ln \chi) \right. \\ &- \frac{1}{2} \, \tilde{A}_{AB} \tilde{D}_s (\ln \chi) + \tilde{A}^i_A \, \tilde{A}_{iB} - \frac{2}{3} \, \tilde{A}_{AB} \left(\hat{K} + 2 \Theta \right) \right]^{\mathrm{TF}} \\ &- \chi \, D_A D_B^{\mathrm{TF}} \alpha + \mathcal{L}_\beta \, \tilde{A}_{AB}^{\mathrm{TF}} \,. \end{split}$$

⊡ ▶

-≣->

Implementation?

- Conformal decomposition.
- Populate ghostzones.
- Standard bulk FDs at Boundary.

$$\begin{split} \partial_t \Theta &\doteq -\alpha \left(\partial_s \Theta + \frac{1}{r} \Theta \right) + \beta^i \, \partial_i \Theta \,, \\ \partial_t \tilde{A}_{ss} &\doteq -\alpha \, \chi \, \left\{ 2 \, \tilde{D}^i \tilde{A}_{is} - \frac{2}{3} \, \tilde{D}_s (2 \, \hat{K} + \Theta) - \frac{2}{3} \, R_{ss} \right. \\ &+ \frac{2}{3} \chi \, \partial_s \left[\tilde{\Gamma}^s - (\tilde{\Gamma}_d)^s \right] - \frac{1}{3} \chi \, \partial_A \left[\tilde{\Gamma}^A - (\tilde{\Gamma}_d)^A \right] \\ &+ \frac{1}{3} \, R_{qq} - 3 \, \tilde{D}^i (\ln \chi) \tilde{A}_{is} - \kappa_1 \, \left[\tilde{\Gamma}_s - (\tilde{\Gamma}_d)_s \right] \right\} \\ &+ \alpha \, \left[\tilde{A}_{ss} \left(\hat{K} + 2 \Theta \right) - 2 \, \tilde{A}^i_s \, \tilde{A}_{is} \right] - \frac{2}{3} \, \chi \, D_s D_s \alpha \\ &+ \frac{1}{3} \, \chi \, D^A D_A \alpha + \mathcal{L}_\beta \, \tilde{A}_{ss} \,, \\ \partial_t \tilde{A}_{AB}^{\mathrm{TF}} &\doteq - \alpha \left[\tilde{D}_s \tilde{A}_{AB} - \tilde{D}_{(A} \tilde{A}_{B)s} + \frac{1}{2} \tilde{A}_{s(A} \tilde{D}_B) (\ln \chi) \right. \\ &- \frac{1}{2} \, \tilde{A}_{AB} \tilde{D}_s (\ln \chi) + \tilde{A}^i_A \, \tilde{A}_{iB} - \frac{2}{3} \, \tilde{A}_{AB} \left(\hat{K} + 2\Theta \right) \right]^{\mathrm{TF}} \\ &- \chi \, D_A D_B^{\mathrm{TF}} \alpha + \mathcal{L}_\beta \, \tilde{A}_{AB}^{\mathrm{TF}} \,. \end{split}$$

⊡ ▶

Implementation?

- Conformal decomposition.
- Populate ghostzones.
- Standard bulk FDs at Boundary.
- Normal EoMs for metric.

$$\begin{split} \partial_t \Theta &\doteq -\alpha \left(\partial_s \Theta + \frac{1}{r} \Theta \right) + \beta^i \, \partial_i \Theta \,, \\ \partial_t \tilde{A}_{ss} &\doteq -\alpha \, \chi \, \left\{ 2 \, \tilde{D}^i \tilde{A}_{is} - \frac{2}{3} \, \tilde{D}_s (2 \, \hat{K} + \Theta) - \frac{2}{3} \, R_{ss} \right. \\ &+ \frac{2}{3} \chi \, \partial_s \left[\tilde{\Gamma}^s - (\tilde{\Gamma}_d)^s \right] - \frac{1}{3} \, \chi \, \partial_A \left[\tilde{\Gamma}^A - (\tilde{\Gamma}_d)^A \right] \\ &+ \frac{1}{3} \, R_{qq} - 3 \, \tilde{D}^i (\ln \chi) \tilde{A}_{is} - \kappa_1 \, \left[\tilde{\Gamma}_s - (\tilde{\Gamma}_d)_s \right] \right\} \\ &+ \alpha \, \left[\tilde{A}_{ss} \left(\hat{K} + 2 \Theta \right) - 2 \, \tilde{A}^i_s \, \tilde{A}_{is} \right] - \frac{2}{3} \, \chi \, D_s D_s \alpha \\ &+ \frac{1}{3} \, \chi \, D^A D_A \alpha + \mathcal{L}_\beta \, \tilde{A}_{ss} \,, \\ \partial_t \tilde{A}_{AB}^{\mathrm{TF}} &\triangleq - \alpha \left[\tilde{D}_s \tilde{A}_{AB} - \tilde{D}_{(A} \tilde{A}_{B)s} + \frac{1}{2} \tilde{A}_{s(A} \tilde{D}_B) (\ln \chi) \\ &- \frac{1}{2} \, \tilde{A}_{AB} \tilde{D}_s (\ln \chi) + \tilde{A}^i_A \, \tilde{A}_{iB} - \frac{2}{3} \, \tilde{A}_{AB} \, (\hat{K} + 2\Theta) \right]^{\mathrm{TF}} \\ &- \chi \, D_A D_B^{\mathrm{TF}} \alpha + \mathcal{L}_\beta \, \tilde{A}_{AB}^{\mathrm{TF}} \,. \end{split}$$

A ■

Implementation?

- Conformal decomposition.
- Populate ghostzones.
- Standard bulk FDs at Boundary.
- Normal EoMs for metric.

Do they work?

$$\begin{split} \partial_t \Theta &\doteq -\alpha \left(\partial_s \Theta + \frac{1}{r} \Theta \right) + \beta^i \, \partial_i \Theta \,, \\ \partial_t \tilde{A}_{\rm SS} &\doteq -\alpha \, \chi \, \left\{ 2 \, \tilde{D}^i \tilde{A}_{is} - \frac{2}{3} \, \tilde{D}_s (2 \, \hat{K} + \Theta) - \frac{2}{3} \, R_{\rm SS} \right. \\ &+ \frac{2}{3} \chi \, \partial_s \left[\tilde{\Gamma}^s - (\tilde{\Gamma}_{\rm d})^s \right] - \frac{1}{3} \, \chi \, \partial_A \left[\tilde{\Gamma}^A - (\tilde{\Gamma}_{\rm d})^A \right] \\ &+ \frac{1}{3} \, R_{qq} - 3 \, \tilde{D}^i (\ln \chi) \tilde{A}_{is} - \kappa_1 \, \left[\tilde{\Gamma}_s - (\tilde{\Gamma}_{\rm d})_s \right] \right\} \\ &+ \alpha \, \left[\tilde{A}_{\rm SS} \left(\hat{K} + 2 \Theta \right) - 2 \, \tilde{A}^i_{\, s} \, \tilde{A}_{is} \right] - \frac{2}{3} \, \chi \, D_s D_s \alpha \\ &+ \frac{1}{3} \, \chi \, D^A D_A \alpha + \mathcal{L}_\beta \, \tilde{A}_{\rm SS} \,, \\ \partial_t \tilde{A}_{AB}^{\rm TF} &\triangleq - \alpha \left[\tilde{D}_s \tilde{A}_{AB} - \tilde{D}_{(A} \tilde{A}_{B)s} + \frac{1}{2} \tilde{A}_{s(A} \tilde{D}_B) (\ln \chi) \\ &- \frac{1}{2} \, \tilde{A}_{AB} \tilde{D}_s (\ln \chi) + \tilde{A}^i_{\, A} \, \tilde{A}_{iB} - \frac{2}{3} \, \tilde{A}_{AB} \, (\hat{K} + 2\Theta) \right]^{\rm TF} \\ &- \chi \, D_A D_B^{\rm TF} \alpha + \mathcal{L}_\beta \, \tilde{A}_{AB}^{\rm TF} \,. \end{split}$$

31.1€

A ■

-≣->

A B > A
 A
 B > A
 A

프 🖌 🛪 프 🕨

Conclusions

Background

Single compact objects

Compact binary evolutions

Conclusions

xit 1558 ■ 2000

David Hilditch

Spherical symmetry I

First applications:

 The zero speed mode in the BSSNOK constraint subsystem (Beyer & Sarbach '02, Gundlach & M Garcia '04) causes Hamiltonian constraint violation. Z4c does not suffer from the problem.

David Hilditch

Spherical symmetry II

CPBCs with Spherical numerics:

≣ ▶ = ≣

Spherical symmetry II

CPBCs with Spherical numerics:

 A detailed examination of the constraint damping scheme was presented in spherical symmetry (Weyhausen et. al. '11).

Spherical symmetry II

CPBCs with Spherical numerics:

- A detailed examination of the constraint damping scheme was presented in spherical symmetry (Weyhausen et. al. '11).
- Evolutions of binary black holes were presented using a variation of the conformal decomposition called CCZ4 (Alic et. al. '11).

Boundary kick in spherical symmetry

Is it really worth making better boundary conditions?

David Hilditch

Boundary kick in spherical symmetry

Is it really worth making better boundary conditions?

• Consider central density in evolution of single TOV star.

Boundary kick in spherical symmetry

Is it really worth making better boundary conditions?

- Consider central density in evolution of single TOV star.
- Sommerfeld gives perturbation. Does not converge away with resolution. BCs can effect physics.

Boundary kick in spherical symmetry

Is it really worth making better boundary conditions?

- Consider central density in evolution of single TOV star.
- Sommerfeld gives perturbation. Does not converge away with resolution. BCs can effect physics.
- Example maximises effect. Boundaries close.

Single puncture black hole

A B > A
 A
 B > A
 A

.≣⇒

● ▶ ● ●

David Hilditch

Single puncture black hole

• Incoming violation as Sommerfeld boundary causally connected.

э.,

Single puncture black hole

- Incoming violation as Sommerfeld boundary causally connected.
- CPBCs reduce violation.

Single puncture black hole

- Incoming violation as Sommerfeld boundary causally connected.
- CPBCs reduce violation.
- At late times BSSNOK has large violation sitting at boundary.

Boundary kick in 3D

◆□ > ◆□ > ◆臣 > ◆臣 >

æ

David Hilditch

Boundary kick in 3D

 Incoming violation kicks star like in spherical symmetry.

문어 수 문어

Э

Boundary kick in 3D

- Incoming violation kicks star like in spherical symmetry.
- Effect tiny compared to that in spherical symmetry.

< 17 >

Boundary kick in 3D

- Incoming violation kicks star like in spherical symmetry.
- Effect tiny compared to that in spherical symmetry.
- Does not converge away.

< 🗇 🕨

A B > A
 A
 B > A
 A

·≣ ► < ≣ ►

Conclusions

Background

Single compact objects

Compact binary evolutions

Conclusions

Э

David Hilditch

Binary Neutron Stars I

A B > A
 A
 B > A
 A

э

æ

≣⇒

Binary Neutron Stars I

Hamiltonian constraint violation reduced in Z4c data.

< 17 >

표 문 문

Binary Neutron Stars I

- Hamiltonian constraint violation reduced in Z4c data.
- Growth in constraint after merger with either formulation.

臣

Binary Neutron Stars II

- ADM mass integral BSSNOK.
- Noise after outgoing signal reaches extraction sphere.

∃)

A ►

Binary Neutron Stars II

표 문 문

Binary Neutron Stars III

Angular momentum type integral:

Jump in BSSNOK when extraction sphere causally connected to outer boundary!

A ■

Binary Neutron Stars IV

Accuracy in GW phase

Convergence up to merger with Z4c for bns. Factor of two in amplitude and phase accuracy in bbh.

∍ →

A B > A
A
B > A
A

Conclusions

Background

Single compact objects

Compact binary evolutions

Conclusions

David Hilditch

Conclusions

<ロ> (四) (四) (三) (三) (三)

David Hilditch

Conclusions

• Z4c constructed to bring the strengths of GHG to moving puncture method.

3

イロン イヨン イヨン イヨン

David Hilditch

• • • •

E> < E>

- Z4c constructed to bring the strengths of GHG to moving puncture method.
- Large improvement over BSSNOK in terms of Hamiltonian constraint violation.

• • • • •

3 × 4 3 ×

- Z4c constructed to bring the strengths of GHG to moving puncture method.
- Large improvement over BSSNOK in terms of Hamiltonian constraint violation.
- CPBCs give improvement over BSSNOK with Sommerfeld in mass and angular momentum conservation.

- Z4c constructed to bring the strengths of GHG to moving puncture method.
- Large improvement over BSSNOK in terms of Hamiltonian constraint violation.
- CPBCs give improvement over BSSNOK with Sommerfeld in mass and angular momentum conservation.
- Improvement in GW error a factor between roughly 2 and 4.

▲□ ► ▲ □ ► ▲

∃ >