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Outline

• Motivation: Transient Astronomy
• The Gaia mission
• Detecting Science Alerts with Gaia
• Supernovae and Microlensing
• Details: Classification from Photometry
• Details: Classification from Spectroscopy
• Verification and Follow-up
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A (childlike) desire to see what’s out 
there.

Variability is everywhere, and a useful 
diagnostic in Astrophysics.

Studying variable/transient behaviour 
leads to improved/new physics

Why do transient 
Astronomy ?

Let's go burn down the 
observatory so this will 

never happen again.

(The Simpsons, Bart’s 
Comet, S06E14)
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EXPLORING THE OPTICAL TRANSIENT SKY WITH THE PALOMAR TRANSIENT FACTORY, Rau et 
al. 2009

5

the transient zoo: from fast to slow

well 
studied

few 
cases

not seen 
yet

made 
up
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Potential Triggers

Supernovae
NEW 

Microlensing events

FU Orionis and similar

R Coronae Borealis

M-dwarf flares

GRBs optical counterparts

Asteroids

Be stars

Classical novae
Dwarf novae Lensed supernovae
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Variable stars vs Science Alerts

7

Science Alerts: science data that would have little or no value without quick 
ground-based follow-up
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Ongoing Transient/
Variability Experiments
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Outline

• Transient astronomy
• The Gaia mission
• Detecting transients with Gaia
• Supernovae and microlensing
• Details: Classification from photometry
• Details: Classification from spectroscopy
• Verification and follow-up

9



Simon Hodgkin, IoA, Cambridge, UK Cardiff University, Gravitational Physics Seminars, Jan 11th 2013

what is Gaia?

the fades, bbc3, episode 3
10



Cardiff University, Gravitational Physics Seminars, Jan 11th 2013Simon Hodgkin, IoA, Cambridge, UK

The ESA Gaia mission

11

http://www.rssd.esa.int/Gaia

• 1 billion objects 
V=5-20 (~1% of the 
Galaxy’s stars)

• Astrometry,  
Photometry, 
Spectrophotometry, 
Spectroscopy 
(radial velocities)

• 5 (+1) years (70x all 
sky): final results 
2020-2021

Kourou
Soyuz-Fregat

Aug 2013

http://www.rssd.esa.int/Gaia
http://www.rssd.esa.int/Gaia
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10 𝜇as is very, very, very, very, very, small

12

slide adapted from Laurent Eyer

Apollo 8, Dec 1968
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 astrometry

x 10,000/ 10-50

van Leeuwen 2007
(factor 2-2.5)
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Gaia end of mission 
parallax errors

14
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Science Goals
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Scanning Law

16

• Two telescopes, one focal 
plane

• Time between FOVs: 
106.5m

• Time between successive 
scans: 6h

• Field revisited every ~30 
days

• Each object measured ~70 
times

• Densest coverage ~200 
epochs
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Scanning Law

17



Cardiff University, Gravitational Physics Seminars, Jan 11th 2013Simon Hodgkin, IoA, Cambridge, UK 18

Scanning Law

• Two telescopes, one focal plane
• Time between FOVs: 106.5m
• Time between successive scans: 6h

• Field revisited every ~30 days
• Each object measured ~70 times
• Densest coverage ~200 epochs
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FoV: 0.7 deg x 0.7 deg
pixel: 0.059”(AL) x 0.177”(AC)

~1 billion pixels every 
4.4 seconds. 
Whole sky survey at 
very short time-scales

Focal Plane

19
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Photometry per transit

20

•1% at G=19 (colours to ~10%)
•<2 mmag precision for G<12

•CCD TDI gates avoid pixel 
saturation for bright stars
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Astrometry per transit

•OGA1: 50 milli arcsec 
(IDT)

•OGA2: 100 micro arcsec 
(24hr later)

21
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BP/RP spectra: 
classification

• two low-res 
fused-silica 
prisms

• BP 330-680nm 
@ 4-32 nm/pixel

• RP 640-1000nm 
@ 7-15 nm/pixel

22
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•0.5 or 2-3 or 7 million Eclipsing Binaries 
(Söderhjelm 2004, Eyer & Cuypers 2000, Zwitter 
2002)

• 5,000-30,000 Planetary transit systems (Robichon 
2002) ?

•60,000-240,000 δ Scuti stars (Eyer&Cuypers 2000)

•70,000 RR Lyrae stars (Eyer&Cuypers 2000)

•2,000-8,000 Cepheids (Eyer&Cuypers 2000).. 9,000 
(Windmark et al. 2010) 

50-150 million variables

23
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Outline

• Transient Astronomy
• The Gaia mission
• Detecting Science Alerts with Gaia
• Supernovae and Microlensing
• Details: Classification from Photometry
• Details: Classification from Spectroscopy
• Verification and Follow-up
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Timeline for Data Flow: new
16h 8h visibility

backlog real time acquisition Gaia

transmission MOC

transmission SOC

0 24one operational day
d-1 d d+1

48

Initial Data Treatment

First Look

Figure courtesy Francois Mignard, updated by LW+STH

Madrid, Spain

G<16, 
Astrometry 
(50 mas)

Astrometry 
(100 μas)

ASA
Science Alerts 
(Cambridge)

G<20, 
Astrometry 
(50 mas)
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Operational 
scheme

New 
Transits

Candidate 
Alerts

Gaia
Classifier

Anomaly
Detector

Available catalogues

VO

Historic data

•SDSS
•2MASS
•NED
•ASAS
•OGLE
•HST archives

•VISTA
•UKIDSS
•VST
•PANSTARRS
•PTF

The most recent 
calibrations are 
used to calibrate 
new data.

New observations 
are compared 
against historic 
ones

Spectra and other 
Gaia data are 
being used for 
classification

Fine-tuning the 
classification 
using archived 
other data

Alerts released to 
the community for 
the follow-up.

cal

Cross-match
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Alert dissemination
•Publication of 
Alerts to the entire 
community: no 
proprietary data.

• VOEvent - 
machine-readable 
format, can be 
displayed in e.g. 
Google Sky

• Skyalert.org - will 
host both alerts and 
follow-up data

27
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• Known variables will typically be excluded from a transient 
survey.

• So we will be monitoring a pre-decided set of known 
interesting objects.

• Flexible - add an object to the list of alerts during the 
mission.

• Normally detected alerts will end-up in the Watch List.

• Real power will come from comparing with other surveys

Watch List
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Outline

• Transient astronomy
• The Gaia mission
• Detecting transients with Gaia
• Supernovae and microlensing
• Details: Classification from photometry
• Details: Classification from spectroscopy
• Verification and follow-up
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Supernova Cosmology

Gaia SN
Z < ~0.1

SCP ‘Union 2.1’ (Suzuki et al 2011)

580 SNe
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Why are local Ia’s 
interesting ?

• standard model: thermonuclear explosion of an accreting CO 
white dwarf, but detailed physics is not understood.

• Progenitor/companion spectral indicators at early times?

• Super-Chandrasekhar (and faint and fast) explosions imply some 
diversity in progenitors

• Existing follow-up programs don’t yet provide adequate rapid 
spectroscopic/LC monitoring.

• C/O ratios, opacities and temperatures of the ejecta, role of 
environment (low metallicity dwarf galaxies).. any evidence for 
evolutionary effects.

• PESSTO survey (Public ESO Spectroscopic Survey for Transient 
Objects, PI: Smartt)

31
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Core collapse SNe
• Important engines of nucleo-synthesis

32
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ANRV385-AA47-03 ARI 22 July 2009 3:51

RSG

Fast rotation BSGBIV−O9.5V
main-sequence

Interacting
binary

II-P SN

SN1987A

IIb

Ibc

NS

NS

NS

NS

8 − 17 M

RSG

WR star NS or BH?

NS

BH

Slow to moderate
rotation

Fast rotationO9.5V−O6V

Interacting
binary

Faint SN? BH

Broad-lined
Ibc

Ibc or
faint SN?

17 − 30 M

Dashed line denotes a rare channel

WR

WR

LBV

BH

BH

BH

PISN or Jet?

PISN or Jet?

O6V−O3V

Faint SN?

Broad-lined
Ibc

GRB at low-Z

Ultrabright
SNe

lln

Fast rotation

Slow to moderate
rotation

>30 M

Slow to moderate
rotation

Figure 12
A summary diagram of possible evolutionary scenarios and end states of massive stars. These channels combine both the observational
and theoretical work discussed in this review, and the diagram is meant to illustrate the probable diversity in evolution and explosion. It
is likely that metallicity, binarity, and rotation play important roles in determining the end states. The acronyms are neutron star (NS),
black hole (BH), and pair-instability supernova (PISN). The probable rare channels of evolution are shown in red. The faint
supernovae are proposed and have not yet been detected.
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Core-collapse 
SNe

33

• Significant interest in rates of 
various sub types of SN. Large 
followup campaign (PESSTO – 
PI: Smartt) aimed at 
characterisation and analysis of 
large sample (ESO:NTT 
2012-2017)

• Require as input high quality 
triggers – Gaia potential source. 

• Early detection and flagging of 
SN in the alert stream is 
important.

Smartt, Annu. Rev. Astron. Astrophys. 2009. 47:63–106
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Need larger samples

34

• Large “unbiased” 
samples of core-
collapse supernovae: 
the role of 
environment. (SNe 
with no host galaxies, 
in dwarfs, in metal 
poor hosts)

• Connecting 
progenitors to 
events.

• Local Ia SNe for the 
calibration of the SNe 
cosmology project

Core-Collapse Supernovae from the Palomar Transient Factory: 
Indications for a Different Population in Dwarf Galaxies, Arcavi et 
al., 2010
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SNa discovery rates

http://www.cbat.eps.harvard.edu/lists/Supernovae.html

See also: Supernovae and Gaia, Altavilla et al. 2011, 2012Ap&SS.tmp...66A

GAIA-C5-TN-IOA-SHO-001-00
In this note, we revisit the simulations of Belokurov and Evans (2003), and make adjustments to account 
for the current mission parameters (the biggest change from the published numbers arising from the 
scanning law which roughly halves the number of observations of each part of the sky).

6000 to G=19

http://adsabs.harvard.edu/abs/2012Ap%26SS.tmp...66A
http://adsabs.harvard.edu/abs/2012Ap%26SS.tmp...66A
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Supernovae simulated at 
increasing distance from a galaxy

Detections by VPA
brighter than 20mag
No windowing information
No priorities for transmission

36

resolved into ~0.1 arcsecond
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What will Gaia see?
Simulated data for M100, based on the HST image. Each transit gives a 
different scanning angle of the galaxy, hence might reveal different knots.

blue: all detections from VPA   green: detections brighter than 20 mag

37
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• Combine astrometric 
and photometric 
events to solve for 
the lens mass.

• discovery of 
astrometric Black 
Hole and Brown 
Dwarf lensing events 
would be a significant 
first for Gaia.

• BH events will cause 
astrometric signals 
around 2 milliarcsec 
(distance dependent). 
BD events are an 
order of magnitude 
smaller. simulation from Lukasz Wyrzykowski: ds=8.6kpc, dl=1kpc, ml=6msun

Astrometric microlensing

Text
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Outline

• Transient astronomy
• The Gaia mission
• Detecting transients with Gaia
• Supernovae and microlensing
• Details: Classification from photometry
• Details: Classification from spectroscopy
• Verification and follow-up
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Automated 
Classification

• 44 million transits per day

• 150->800 GByte/day

• we expect 100s-1000s of potential astrophysical triggers per 
day (real variables/moving objects).

• additional contaminants from noise (dominated by 
systematics)

• this precludes visual classification of a rich data stream

• based on streaming data (i.e. not waiting until the lightcurve is 
complete)

• automated methods are fast, repeatable and tuneable
get them out the door assess completeness/errors adjust strategy

40
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Transient light curve classification 
challenges: ... this ?

time

flu
x/

m
ag

ni
tu

de
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Transient light curve classification 
challenges: ... or this ?

-2
0

-1
5

-1
0 -5 0 5 10 15

0

5

10

15

20

time

flu
x/

m
ag

ni
tu

de

42



Cardiff University, Gravitational Physics Seminars, Jan 11th 2013Simon Hodgkin, IoA, Cambridge, UK

Features

• signal vs background events distinguished 
on the basis of features

• e.g. magnitude, signal-to-noise, fwhm: star/
galaxy/cosmics

• the problem is how to maximise separation 
between classes of event 

43
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Strategies for classification
• multi-parameter 

thresholding (e.g. 
changes in 
amplitudes)

• matched filters 
(compare LC to 
model/template 
prediction)

• class-specific 
machine-learning 
methods (e.g. SN 

tends to treat 
parameters as 
independent

44
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Strategies for classification
• multi-parameter 

thresholding (e.g. 
changes in 
amplitudes)

• matched filters 
(compare LC to 
model/template 
prediction)

• class-specific 
machine-learning 
methods (e.g. SN 

tends to treat 
parameters as 
independent

parameters are 
often correlated

45
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• multi-parameter 
thresholding (e.g. 
changes in 
amplitudes)

• matched filters 
(compare LC to 
model/template)

• class-specific 
machine-learning 
methods (e.g. SN 
factory)

Microlensing events

ignores all the other classes
but pretty much necessary 
for some cases

Strategies for classification

46
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Strategies
• class-specific 

machine-learning 
methods (e.g. 
decision trees, 
random forests, 
support vector 
machines, automated 
neural networks)

significant improvement in 
efficiency for SN factory, 
Bailey et al. 2007

sizes) or no splits can be found that would improve the overall
quality of the tree.

Decision trees are a generalization of threshold cuts and thus
have more flexibility to optimally select a set of signal events
within a feature space. However, single decision trees tend to be
unstably dependent upon the details of the training set. A small
change in the training set can produce a considerably different tree
and thus a considerably different performance on the validation
set.

2.3.1. Boosted Trees

Boosting algorithms improve the performance of a classifier
by giving greater weight to events that are hardest to classify. In
the case of decision trees, a tree is trained on a set of data, mis-
classified events are identified and their weights are increased,
and the process is repeated to form new trees. This iteratively
produces a set of increasing-quality decision trees. The final clas-
sifier uses the weighted ensemble average of all of the trees to
make a classification decision. The boosting provides decision
trees with better separation power, and the ensemble average
washes out the training instabilities associated with single de-
cision trees. In applications with !20 or more input features,
boosted decision trees can provide significantly better results
than artificial neural networks (Roe et al. 2005; see also x 2.5).

There are a variety of boosting algorithms used to increase the
weights ofmisclassified events (Freund&Schapire 1996; Friedman
2001; Friedman et al. 2000).We describe here the commonly used
discrete AdaBoost method (Freund & Schapire 1996). Define the
error rate for tree m as

errm ¼
PN

i¼1 wi IiPN
i¼1 wi

; ð7Þ

where Ii = 0 if event i is correctly classified, and Ii = 1 if it is
incorrectly classified. Typically, the first tree is trained with the
same weight for all events. Then adjust each of the event weights
using

!m ¼ " ln ½(1& errm)=errm'; wi ! wie
!m Ii : ð8Þ

This increases the weights of misclassified events; the weights
are increasedmore when the tree has a low error rate. These new
weights are then used to generate a new decision tree. The stan-

dard AdaBoost algorithm uses " = 1, but this can be adjusted to
vary how quickly the weights are updated with each iteration.

After generatingM individual trees with weights !m, the final
classifier answer for an event described by a set of features x is

T (x) ¼
XM

m¼1

!mTm(x); ð9Þ

where Tm(x) is the result for tree m: zero if x lands on a back-
ground leaf andþ1 for a signal leaf. The absolute normalization
of T(x) is arbitrary; we chose to renormalize the weights !m such
that 0 ) T(x) ) 1.

2.3.2. Random Forests

Random forests (Breiman 2001) also generate multiple de-
cision trees for a given training set and use a weighted average of
the trees as the final decisionmetric.When training a tree, at each
branch the training cycle only considers a random subset of the
possible features available to use. This has the effect of washing
out the typical training instabilities of decision trees and pro-
duces a classifier that is fast to train and robust against outliers.

2.4. Support Vector Machines

The support vector machine (SVM) algorithm is a classifi-
cationmethod that has successfully been applied to many pattern
recognition problems and is founded on principles of statistical
learning theory (Vapnik 1998; Chen et al. 2005). It nonlinearly
maps data points from the original input space to a higher dimen-
sional feature space, as shown in Figure 3, in which an optimal
hyperplane parameterized by a normal vector w and offset b is
computed such that the separation between events in different
classes is maximized. The linear decision boundary is defined as
f (x) = w = #(x) þ b, where x is a vector in the feature space that
describes objects and # is a mapping that embeds the problem
into a higher dimensional space in which classes are more easily
separable than in the original feature space.

An optimization problem is constructed to find the unknown
hyperplane parameters, and the optimal hyperplane normal w is
found to be entirely determined by the subset of events nearest to
the optimal decision boundary (also called support vectors, xi) as
follows:w =

P
ci#(xi), where the coefficients ci are the Lagrange

multipliers used in solving the nonlinear optimization and are a
by-product of the optimization.

Fig. 3.—Illustration of a support vector machine. An input space of features is mapped into a higher dimensional space where the separation of classes becomes easier.
The separation boundary in the original space may be quite complex, even disjoint. In the higher dimensional space, the separation surface is a hyperplane whose
parameters are entirely determined by the subset of events (the support vectors) nearest to the boundary.

IDENTIFYING SUPERNOVAE IN DIFFERENCE IMAGES 1249No. 2, 2007

this decision allows  for 
a distinction between 

high and low SNR 
detections

the values of A,B,C,D 
are arrived at by 
training

47
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Decision Trees
• Decision trees (Breiman et al. 1984) separate signal from 

background events by making a cascading set of event 
splits (generalization of threshold cuts)

• A training procedure automatically selects the features and 
cut values to generate a tree with maximal separation of 
signal and background events.

• However, a small change in the training set can produce a 
considerably different tree.

• Boosting algorithms improve the performance of a classifier 
by giving greater weight to events that are hardest to 
classify.

Bailey et al. 2007, HOW TO FIND MORE SUPERNOVAE WITH LESS WORK: 
OBJECT CLASSIFICATION TECHNIQUES FOR DIFFERENCE IMAGING

48
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Random Forests
• Random forests (Breiman 2001) 

also generate multiple decision 
trees for a given training set and 
use a weighted average of the 
trees as the final decision metric.

• When training a tree, at each 
branch the training cycle only 
considers a random subset of the 
possible features available to use. 

• This has the effect of washing out 
the typical training instabilities of 
decision trees and produces a 
classifier that is fast to train and 
robust against outliers.

Bailey et al. 2007, HOW TO FIND MORE SUPERNOVAE WITH LESS WORK: 
OBJECT CLASSIFICATION TECHNIQUES FOR DIFFERENCE IMAGING

assumption. Typically these fakes will have a FWHM that differs
very significantly from the average (!20 pixels vs. !3). Most
stars are sufficiently isolated that they do not bring along portions
of other objects, and we identify and reject cases where this does
happen. The spatial variation of the PSF is minimal compared
with the night-to-night variations that must be addressed by the
image subtraction pipeline; thus, this fake-supernova genera-
tion procedure does not attempt to correct for the small spatial
variations of the PSF across the CCD.

Background events were randomly selected from 4.1 million
other objects identified on the subtractions with fake supernovae.
These subtractions covered amonth of data taking, including bright
and dark times and a variety of seeing conditions. Objects within
20 pixels of a fake supernova were excluded, to avoid any arti-
facts that might be introduced through an ill-formed fake. These
background events form a randomly selected subset of the gen-
uine backgrounds faced by the supernova search in the real data
and thus represent the real fractions of each type of background
event faced.

The signal and background samples were split into training
and validation subsets. Several training sets were formed with
5000 signal and 5000 background events each. The final valida-
tion was performed using 20,000 signal and 200,000 background
events. The training data set for the SVMmethod was augmented
with real supernova discoveries in an attempt to improve its over-
all performance. The original training set used 19 features; an ad-
ditional 13 were then added, which improved the performance of
the boosted trees and random forests but decreased the perfor-
mance of the SVM. The results shown in x 6 are for the best per-
formance achieved for each classifier (i.e., using 19 features for
SVM and 32 features for the other methods).

5. CLASSIFICATION SOFTWARE

For Fisher discriminant analysis, boosted trees, and random
forests, we used the open-source C++ software package Stat-
PatternRecognition.11 Training a set of 200 boosted trees using
10,000 training events with 19 features each, with a minimum leaf
size of 15 events,12 takes !3 minutes (wall-clock) on a 2 GHz
AMDOpteron CPU. Training with 32 features takes!45minutes.
Once the trees are trained, it takes approximately 0.6 ms (wall-
clock) to evaluate the results for an object. Random forests took less
than 2 minutes to train on the data set with 32 features, using the
same parameters as above. Evaluation of a new event takes ap-
proximately 0.2ms. Fisher discriminant analysis took 1 s to train on
the 32-feature data set and 0.07 ms to evaluate results for a new
object.

For SVM, we used the LIBSVM C++ package.13 Training a
C-SVM using 10,000 training events with 19 features each takes
from 5 s to 15 s (wall-clock) on a 2 GHz AMD Opteron CPU,
depending upon the settings of the two parameters used (if the
parameters overfit the data, more support vectors are needed, so
training time increases). Evaluating the SVMon a new data point
takes approximately 0.6 ms (wall-clock).

6. COMPARISON OF METHODS

In the end, most classification methods produce a single clas-
sification statistic with arbitrary normalization that rates how
signal-like or how background-like the candidate is. A threshold
cut on this statistic can be used to select a subsample of events

with desired signal versus background purity. A useful way to vi-
sualize the power of a classifier is to plot the fraction of false pos-
itives (i.e., background events incorrectly classified as signal)
versus fraction of true positives (i.e., signal events correctly iden-
tified) for different selection values on the classification statistic.

Figure 4 shows the performance of several classification meth-
ods applied to the SNfactory data set. The gray diamond shows the
performance of the original threshold cuts upon which we were
working to improve. The curves show that SVM, random forests,
and boosted trees all performed dramatically better than the thresh-
old cuts across a wide range of signal and background efficiencies.
The object features in our data have significant outliers, which pre-
vented Fisher discriminant analysis from being a useful classifi-
cation method.

The overall best performance was obtained using boosted de-
cision trees, with random forests providing nearly as good per-
formance with faster training and evaluation times. Although
SVM performed considerably better than threshold cuts, it was
not as successful as random forests or boosted trees. A possible
explanation is that the SVMproved to bemore sensitive to signal
events that lie close to background events in the feature space
and could not strike a balance between modeling such events
versus overfitting to noise. For example, a dim young supernova
on a bright galaxy can be very similar to a statistical fluctuation
or a modest subtraction error in the images. Robustness against
overfitting is a known strength of boosted classifiers (Freund &
Schapire 1999), and the issue of overfitting noisy data is an area
of active research within the machine-learning community. Fur-
ther details of applying SVM to the SNfactory data set are de-
scribed in Romano et al. (2006).

Boosted trees, random forests, and SVM successfully reduced
the false-positive rate for all types of background events in our

11 See http://sourceforge.net /projects/statpatrec.
12 The selection of the number of trees andminimum leaf size are described in

x 6.1.
13 See http://www.csie.ntu.edu.tw/~cjlin/ libsvm.

Fig. 4.—Comparison of boosted trees (solid line), random forests (dashed
line), SVM (dotted line), and threshold cuts (dash-dotted line) for false-positive
identification fraction vs. true-positive identification fraction. For the threshold
cuts, the signal-to-noise ratio, motion, and shape cuts were varied to adjust signal
and background rates. The gray diamond shows the performance of the threshold
cuts used during the SNfactory summer 2006 search; the gray square shows the
performance achieved with boosted trees, which were used for the fall 2006
SNfactory search. The lower right corner of the plot represents ideal performance.
[See the electronic edition of the Journal for a color version of this figure.]
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Fig. 12.— Confusion matrix for robotclass random forest classification. Classes are aligned so that

entries along the diagonal corresponds to correct classification. Probabilities are normalized to sum

to unity for each column. Recovery rates are ≥90%, with very high purity, for the three dominant

classes. Classification accuracy suffers for the two classes with small amounts of data (note: class

size is written along the bottom of the figure).

forest is that its component trees are de-correlated by sub-selecting a small random number of

features as splitting candidates in each non-terminal node of the tree. As a result, the average

of the de-correlated trees has highly decreased variance over each single tree. To handle missing

feature values—which arise due to incompleteness in the context features—we use the missForest

imputation method of Stekhoven & Bühlmann (2011), which estimates the value of each missing

feature via an iterative nonparametric approach to minimize imputation error.

For the PTF Type classification problem, we have 1573 Transient and 380VarStar sources15.

Using features derived at the time of discovery, we obtain a 3.8% overall error rate (all error rates

stated are found using 10-fold cross validation). For the 1422 sources with SDSS coverage, the error

rate is 1.7%, while for the other 531 sources with no SDSS coverage the error rate jumps to 9.4%.

15There is some ambiguity in the initial typing scheme in the boundary between VarStar and Transient: cata-

clysmic variables (CVs), for instance, could be considered in either category. However, for definiteness, we put CVs

in the VarStar category.
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Preparation of the Templates
• Novae - from AAVSO

• DNe - model from OGLE

• SNe - all types from 
Nugent

• LPVs - from OGLE
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Template light curve of SN Ia Training data set and test object
am

pl
itu

de

Rise Fall

Steeper Steeper

Method: training sets
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Real observations with error-bars

Each pair has a distribution of 
parameters due to error-bars

Training data set and test object
known supernova from Stripe82

For more than 
one pair 
the final 
resulting PDF 
is sum of PDFs

N
O

VA D
N

LP
VSN

Method: a test object
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AlertPipe Features
Lightcurve
gradient
amplitude
historic rms
magnitude
SNR
transit rms

Auxillary
neighbour star
shape pars
motion pars
coords
crowding
calibration offset
correlations
QC pars

Spectrum
flux v lambda
colours
SSCs
SpTy

Xid Environment
near known star mags
near known star cols
near known variable class
near galaxy
near galaxy Z
circumnuclear

54



Cardiff University, Gravitational Physics Seminars, Jan 11th 2013Simon Hodgkin, IoA, Cambridge, UK

Curation 
Flow
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Outline

• Transient astronomy
• The Gaia mission
• Detecting transients with Gaia
• Supernovae and microlensing
• Details: Classification from photometry
• Details: Classification from spectroscopy
• Verification and follow-up
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star: supergiant B0

star: main sequence M0

supernova 2002dj at -11d 

zero-redshift quasar

Template Observed

Spectral classification
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SuperNova library creation

E. Hsiao template for SN Ia

P. Nugent template for SN Ibc
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BP/RP SN Spectra: Parameter Estimation
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mg = 18 mag

Confusion among SNIIp and IIL. 
èVery similar spectra. 
èMain differences in lightcurve.

• Range of model templates (Nugent, Hsiao)
• Perturb spectra (magnitude, redshift), add noise.
• Classify

BP/RP SN Spectra: 
Classification of Type

mg = 17 mag

Nadejda Blagorodnova, PhD @ IoA
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Outline

• Transient astronomy
• The Gaia mission
• Detecting transients with Gaia
• Supernovae and microlensing
• Details: Classification from photometry
• Details: Classification from spectroscopy
• Verification and follow-up
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Purposes of Verification
• Demonstrate transient detection works

• Demonstrate transient classification works

• Test thresholds

• Validate associated classification 
probabilities

• Investigate Gaia Science Alert population : 
completeness and contamination

• To build a training data set
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How do we verify?
• Using the Gaia BP/RP spectroscopy

• Cross-comparison with other transient/
variability studies : CRTS, PTF, ASAS, 
Skymapper, i.e. large sample of known 
variables (cheap).

• But not great for Gaia transients.. by 
definition. Therefore we will need our own 
follow-up programmes.
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Size of Verification Plan?

• Depends on the 
goals

• For a training set: 
100s per broad 
class seems to 
be a reasonable 
estimate

• This is of order 
500 ‘follow-ups’
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Fig. 12.— Confusion matrix for robotclass random forest classification. Classes are aligned so that

entries along the diagonal corresponds to correct classification. Probabilities are normalized to sum

to unity for each column. Recovery rates are ≥90%, with very high purity, for the three dominant

classes. Classification accuracy suffers for the two classes with small amounts of data (note: class

size is written along the bottom of the figure).

forest is that its component trees are de-correlated by sub-selecting a small random number of

features as splitting candidates in each non-terminal node of the tree. As a result, the average

of the de-correlated trees has highly decreased variance over each single tree. To handle missing

feature values—which arise due to incompleteness in the context features—we use the missForest

imputation method of Stekhoven & Bühlmann (2011), which estimates the value of each missing

feature via an iterative nonparametric approach to minimize imputation error.

For the PTF Type classification problem, we have 1573 Transient and 380VarStar sources15.

Using features derived at the time of discovery, we obtain a 3.8% overall error rate (all error rates

stated are found using 10-fold cross validation). For the 1422 sources with SDSS coverage, the error

rate is 1.7%, while for the other 531 sources with no SDSS coverage the error rate jumps to 9.4%.

15There is some ambiguity in the initial typing scheme in the boundary between VarStar and Transient: cata-

clysmic variables (CVs), for instance, could be considered in either category. However, for definiteness, we put CVs

in the VarStar category.

Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era
J. S. Bloom1, J. W. Richards1,2, P. E. Nugent3,1, R. M. Quimby4, M. M. Kasliwal4, D. L. Starr1, D. Poznanski1,3, E. O. Ofek4, S. B. Cenko1, N. R. Butler1, S. R. Kulkarni4, A. Gal-Yam5, N. Law6

http://arxiv.org/abs/1106.5491v1

http://arxiv.org/abs/1106.5491v1
http://arxiv.org/abs/1106.5491v1
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When? 

! Start after 3 – 6 months after receiving the first Gaia data. Enough historical data 
shall be compiled for most of the objects. 

! Last about 3 months. 

launch
September 2013

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul

2013 2014

reaching L2
system shake-down

Ecliptic Poles
scanning

data accumulation
over whole sky

verification phase
alerts released
internally

regular observing phase
alerts released publicly

Aug Sep

Lukasz Wyrzykowski, 14.06.2012

Oct

Monday, 30 July 12

 
Who? 
A dedicated network of follow-up telescopes operating in a Target of Opportunity (ToO) mode.  
The Science Alerts Verification Phase will get some support from GBOG (Ground Based Observations 
for Gaia). However, a much bigger effort is required, so that welcome all telescopes to join the Gaia 
alerts follow-up network, from small to big. Every observation/frame counts. All groups of 
astronomers are encouraged to join!  
 
Benefits of getting involved 
Understand Gaia data early and be ahead of the game! 
Early involvement in the alerts observations can result in establishing a good connection with the Gaia 
alerts stream when they become fully public.  

Preliminary list of groups involved  
Country Telescope/Observatory  Details and location 

Belgium Mercator  1.2m, La Palma, Spain 
Denmark The Danish Telescope  1.54m, La Silla, Chile 
Italy Catania   0.80m robotic Ritchey-Cretien (APT2), Serra la Nave, Catania, 

Italy 
Italy Col Drusciè Observatory, Italian 

Supernova Search Project  0.5m and 11cm Schmidt Cassegrain, Dolomiti, Italy 

Gaia Operations: Year 1
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• Ecliptic Pole Scanning Law at start of operations
• Nominal Scanning Law data accumulation starts early 2014
• I envisage two main verification efforts

V1 : towards the end of EPSL mode
V2 : commences as soon as sufficent sky has been observed 
enough times to define the baseline catalogue
V3: extended verification for rare classes and monitoring

V1 V2 V3
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Fraction of the sky to be observed 
during the Verification

Requiring 
at least 
10 points 
collected 
by day 90

and at 
least 2 
points 
before 
day 180
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GAIA-FUN-TO
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http://www.ast.cam.ac.uk/ioa/wikis/gsawgwiki

http://www.ast.cam.ac.uk/ioa/wikis/gsawgwiki
http://www.ast.cam.ac.uk/ioa/wikis/gsawgwiki
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Additional Photometry

• Tells us that a source is real !
• Can recover morphological/

environmental information (limited SM/AF 
info for faint targets).

• Monitor the lightcurve with better 
coverage - important for classification.
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Follow-up calibration server
for CRTS follow-up phase

69

Server has been tested by Italian and 
American colleagues

software developed by Sergey Koposov, IoA
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How much additional 
spectroscopy?

• If we deem the Gaia spectroscopy insufficient.

• If we assume that a single ground-based 
spectrum is sufficient for broad classification.

• If we cannot rely on contemporaneous 
overlapping experiments

• 500 objects will each require ~30 minutes 
(generous).

• We would need ~250 hours or ~1 month total
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Verification issues
• Homogeneity of the spectra (wavelength range, 

dispersion, SNR)

• Suggests (to me) dedicated programmes on 
relatively few instruments.

• Less of a problem for the photometry

• Data management

• People power
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What makes Gaia 
transients precious?

• All sky 

• Huge dynamic range: 5-20 mag 

• Spectro-photometry for each object means 
classification on the go 

• Astrometry: can mean a lot for local SNe 

• High temporal resolution
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Summary

• Gaia: A rich source of transient phenomena from late-2014
• The alert stream is non-proprietary and the will form the 

first data from Gaia
• Significant verification program in mid-2014
• Watch List: call for targets shortly after launch
• Huge scope for multi-messenger science
• The science alerts software framework is in place 

(detection, curation, reporting)
• Plenty of scope for involvement, especially with verification
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