

Walter Del Pozzo

COSMOLOGY WITH GRAVITATIONAL WAVES

Outline

- Gravitational waves (GW) as standard sirens
- General Bayesian approach
- Measurements with 2nd generation IFOs
- Measurements with 3rd generation IFOs
- Outlook

EM observations

- All the information we have about the Universe is mediated by electromagnetic radiation
- The Universe is NOT transparent
 - absorption emission processes
 - radiation hydrodynamics
- Our instruments have limited sensitivity

EM observations

- Measuring distances requires:
 - identification of 'standard candles'
 - cross-calibration of various candles
 - "iterate and hope it converges" (Shore, S.N., The Tapestry of Modern Astrophysics, 2002)
- This procedure defines the "cosmic distance scale ladder"

GW as standard sirens

- The Universe is transparent to GWs
- GWs allow a direct measurement of the luminosity distance D_L to a source

No "cosmic distance scale ladder" required

- Tens of detections with D_L < *few* x 100 Mpc could plausibly measure H₀ within a few percent (Schutz 1986)
- In general, no redshift information can be extracted and must be obtained some other way

GW as standard sirens

- Extensive literature on the subject, focused on 2 methods:
 - 1. with counterparts:
 - e.g.: Dalal et al. 2006, Sathyaprakash et al. 2010, Nissanke et al. 2010, Zhao et al. 2011, Del Pozzo 2012
 - 2. without counterparts:
 - e.g.: Chernoff & Finn 1993, Taylor et al. 2012, Taylor & Gair 2013

GW as standard sirens

With Counterparts

- In this case one searches for an electromagnetic counterpart to get the redshift
 - GRBs
 - host galaxy identification
- The redshift information is certain:
 - the probability distribution for the redshift is either a delta function (e.g. Nissanke et al. 2010) or a sum of deltas (Del Pozzo 2012)

Without counterparts

- One relies on the knowledge of some intrinsic property of the system
 - equation of state (EOS) of neutron stars (Messenger, Read 2012)
 - mass function (e.g. Taylor et al. 2012)
- The redshift information is statistical:
 - we obtain a probability distribution for the value of the redshift for each source

A general Bayesian approach

Del Pozzo, Physical Review D, vol. 86, Issue 4, 2012

General solution

- Given a set of *n* GW events $\mathcal{E} \equiv \epsilon_1, \ldots, \epsilon_n$ and a cosmological model \mathcal{H} , we want to estimate the value of the cosmological parameters $\vec{\Omega}$
- From Bayes theorem:

$$p(ec{\Omega}|\mathcal{E},\mathcal{H},\mathcal{I}) = p(ec{\Omega}|\mathcal{H},\mathcal{I}) rac{p(\mathcal{E}|ec{\Omega},\mathcal{H},\mathcal{I})}{p(\mathcal{E}|\mathcal{H},\mathcal{I})}$$

General solution

• We can consider the events independent from each other, thus

$$p(\vec{\Omega}|\mathcal{E}, \mathcal{H}, \mathcal{I}) = p(\vec{\Omega}|\mathcal{H}, \mathcal{I}) \prod_{i=1}^{n} \frac{p(\epsilon_i | \vec{\Omega}, \mathcal{H}, \mathcal{I})}{p(\epsilon_i | \mathcal{H}, \mathcal{I})}$$

General solution

 Indicate with *d* the set of parameters on which the GW signal depends

– for non-spinning signals:

 $ec{ heta} \equiv (m_1, m_2, \phi_c, au_c, lpha, \delta, \psi, \iota, z, D_L)$

• The (quasi-)likelihood is given by:

$$p(\epsilon_i | ec{\Omega}, \mathcal{H}, \mathcal{I}) = \int \mathrm{d}ec{ heta} \, p(ec{ heta} | ec{\Omega}, \mathcal{H}, \mathcal{I}) p(\epsilon_i | ec{\Omega}, ec{ heta}, \mathcal{H}, \mathcal{I})$$

Priors

• Expand the prior probability distribution for the GW parameters:

 $p(ec{ heta}|ec{\Omega},\mathcal{H},\mathcal{I}) = p(m_1,m_2,\phi_c,t_c,\psi,\iota,lpha,\delta,z|ec{\Omega},\mathcal{H},\mathcal{I})p(D_L|z,ec{\Omega},\mathcal{H},\mathcal{I})$

• In general:

 $p(D_L|z, \vec{\Omega}, \mathcal{H}, \mathcal{I}) = \delta(D_L - D(\vec{\Omega}, z))$

because of the explicit dependence on the cosmological model ${\ensuremath{\mathcal H}}$

Priors

• In a FRWL universe:

$$D(\vec{\Omega}, z) = \begin{cases} \frac{c(1+z)}{H_0} \frac{1}{\sqrt{\Omega_k}} \sinh\left[\sqrt{\Omega_k} \int_0^z \frac{dz'}{E(z')}\right] & \text{for } \Omega_k > 0\\ \frac{c(1+z)}{H_0} \int_0^z \frac{dz'}{E(z')} & \text{for } \Omega_k = 0\\ \frac{c(1+z)}{H_0} \frac{1}{\sqrt{|\Omega_k|}} \sin\left[\sqrt{|\Omega_k|} \int_0^z \frac{dz'}{E(z')}\right] & \text{for } \Omega_k < 0 \end{cases}$$

$$E(z') = \sqrt{\Omega_m (1+z')^3 + \Omega_k (1+z')^2 + \Omega_\Lambda}.$$

.

Priors

- Other terms in the prior probability distribution are set by the information *I* we have for the event under consideration, e.g.:
 - for GRBs:

$$p(lpha, \delta, z | \mathcal{I}_{GRB}) = \delta(z - z_{GRB})\delta(lpha - lpha_{GRB})\delta(\delta - \delta_{GRB})$$

– knowledge of the mass function:

 $p(m_1, m_2, z | \mathcal{I}_{MF}) = p(m_1, m_2 | \mathcal{I}_{MF}) p(z | m_1, m_2, \mathcal{I}_{MF})$

Likelihood

• The likelihood assumes the standard form; for a network of K detectors:

$$p(\epsilon_i | \vec{\Omega}, \vec{\theta}, \mathcal{H}, \mathcal{I}) = \prod_{k=1}^{K} p(\epsilon_i^{(k)} | \vec{\Omega}, \vec{\theta}, \mathcal{H}, \mathcal{I})$$

• And in each detector:

$$p(\epsilon_i^{(k)}|\vec{\Omega},\vec{\theta},\mathcal{H},\mathcal{I}) = e^{-(s_i^{(k)} - h^{(k)}(\vec{\Omega},\vec{\theta})|s_i^{(k)} - h^{(k)}(\vec{\Omega},\vec{\theta}))/2}$$

• where I introduced the scalar product:

$$(\mathbf{f}|\mathbf{g}) = 2 \int_0^\infty df \, \frac{\tilde{\mathbf{f}}^* \tilde{\mathbf{g}} + \tilde{\mathbf{f}} \tilde{\mathbf{g}}^*}{S_n^{(k)}(f)}$$

5/10/13

Measuring H₀ with 2nd generation IFOs

Inference of H₀

 I applied the aforementioned formalism to compact binary coalescences observed by three networks of 2nd generation instruments

Inference of H_0

 If we assume that each GW event happens within a galaxy, then the sky position and redshift priors:

$$p(lpha,\delta,z|\mathcal{I}) \propto \sum_{i=1}^N p_i \delta(z-z_i) \delta(lpha-lpha_i) \delta(\delta-\delta_i)$$

where *i* labels each galaxy and the *p_i* are some weights which might depend on the morphology, SFR, environment, luminosity, etc.

Sloan Digital Sky Survey

- SDSS (<u>http://www.sdss.org/</u>) is an imaging and spectroscopic survey initiated in 2001 and whose operation is still continuing.
- The SDSS II (DR8) dataset includes 230 million celestial objects detected in 8,400 square degrees of imaging and spectra of 930,000 galaxies, 120,000 quasars, and 225,000 stars.

Sloan Digital Sky Survey

• Map of the SDSS DR8 spectroscopic survey

What do we expect to measure?

 With 2nd generation IFOs, a measurement of the energy density parameters from stellar mass systems will not be possible

The GW events catalog

- Generated 1000 GW events uniformly distributed on SDSS (sky position and redshift):
 - m1,m2 in [1.0,15.0] Msun
 - inclination and polarisation uniform on the 2sphere
 - Frequency domain approximant (TaylorF2)
 - 3.5PN phase
 - OPN amplitude
 - non-spinning

The GW events catalog

• SDSS is a reasonable choice for advanced IFOs

Analysis details

- The analysis has been performed using a Nested Sampling algorithm (Skilling 2004, Veitch & Vecchio 2010)
- Each signal is analysed in 10 independent gaussian noise realisations
 - All pdfs shown are averaged over them
- Priors for $\vec{\theta}$ are standard
- Priors for $h, \Omega_m, \Omega_\Lambda$ are uniform:

 $h \in \mathbf{R}[\mathbf{0},\mathbf{1},\mathbf{1},\mathbf{0}], \Omega_m \in [0.0,\mathbf{1},\mathbf{0}], \Omega_{\mathbf{A}} \in \mathbf{R}[\mathbf{0},\mathbf{0},\mathbf{0}], \Omega_k = 1 - \Omega_m - \mathbf{1}_{\mathbf{A}} \Omega_{\mathbf{A}}$

Single source analysis

- Single source example:
 - SNR_{HLV,HLVJ,HLVJI} = 13.7,15.1,17.7
 - 95% confidence: 14.8 deg², 3.9 deg², 2.2 deg²
 - 600, 339, 230 hosts

- The posteriors from each source show a 3-way degeneracy between redshift, H₀ and inclination
- Mitigated with more that 3 IFOs
- Necessity of multiple events for a reliable posterior for H_0

• Some statistics (average 95% confidence widths):

network	h	Ω_m	Ω_k	Ω_Λ	z	dec/rad	R.A./rad	$\cos \iota$	ψ/rad	$t_c/{ m ms}$	${\cal M}/M_{\odot}$	η	$N_{ m galaxies}$)	$\left/ N_{ m galaxies}^2 - \langle N_{ m galaxies} angle^2 ight.$
HLV	0.63	0.95	1.55	0.95	0.04	0.05	0.05	0.45	1.6	1.1	0.01	0.01	283	332
HLVJ	0.57	0.95	1.55	0.95	0.04	0.04	0.03	0.40	1.6	0.6	0.007	0.01	171	192
HLVJI	0.54	0.95	1.55	0.95	0.03	0.03	0.02	0.34	1.6	0.4	0.006	0.01	118	137

- More IFOs in the network improve significantly sky position (e.g. Nissanke et al 2010, Schutz 2011)
 - Reduction of the number of possible hosts
- Note the width for *h*
 - no real measurement of h is possible with a single source

Multiple events analysis

• When the information from multiple sources is combined, the correct value of *h* emerges:

• The larger the network, the faster the convergence (and more accurate the estimate)

Multiple events analysis - summary

		HLV			HLVJ		HLVJI		
# events	$\langle h_{2.5\%} angle$	$\langle \overline{h} angle$	$\langle h_{97.5\%} angle$	$\langle h_{2.5\%} angle$	$\langle \overline{h} angle$	$\langle h_{97.5\%} angle$	$\langle h_{2.5\%} angle$	$\langle \overline{h} angle$	$\langle h_{97.5\%} angle$
5	0.644	0.753	0.982	0.664	0.701	0.765	0.663	0.705	0.779
10	0.671	0.714	0.775	0.675	0.699	0.725	0.674	0.698	0.721
15	0.676	0.705	0.754	0.681	0.699	0.716	0.682	0.697	0.712
20	0.679	0.701	0.722	0.684	0.698	0.711	0.684	0.697	0.709
30	0.681	0.698	0.717	0.688	0.699	0.708	0.687	0.697	0.707
40	0.686	0.700	0.714	0.687	0.699	0.707	0.689	0.697	0.704
50	0.686	0.700	0.714	0.687	0.700	0.706	0.689	0.700	0.703

- Compare with:
 - $H_0 = 73 \pm 4(stat) \pm 5(syst) \text{ km s}^{-1} \text{ Mpc}^{-1}(\text{Riess et al. 2005, Snla})$
 - H_0 = 62.3 ± 1.3(stat) ± 5(syst) km s⁻¹ Mpc⁻¹ (Freeman et al. 2006, Snla+Cepheids)

 $- H_0 = 74.2 \pm 3.6 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ (Riess et al. 2009, Snla+Cepheids)}$ Walter Del Pozzo, Cardiff University

Multiple events analysis - summary

Inference of the cosmological parameters with 3rd generation IFOs

Del Pozzo, Li, Messenger, in preparation

GW from BNS systems

 In the late stages of the inspiral, dissipative forces modify the dynamics of the system via 5PN and 6PN order terms:

$$\psi_{tidal}(f) = (\pi M f)^{-\frac{5}{3}} \sum_{a=1,2} \frac{3\lambda_a}{128\eta M^5} \left[-\frac{24}{\chi_a} \left(1 + \frac{11\eta}{\chi_a} \right) (\pi M f)^{10/3} - \frac{5}{28\chi_a} \left(3179 - 919\chi_a - 2286\chi_a^2 + 260\chi_a^3 \right) (\pi M f)^{12/3} \right]$$

– with:
$$\chi_a = m_a/M$$
 $\lambda_a = \lambda(m_a)$

• Note that $\lambda_a \propto (c^2 R_a/Gm_a)^5 \sim 10^5$

GW from BNS systems

- The tidal terms depend on the rest frame masses:
 - if one knows the function λ(m) one can get a measurement of the redshift from GW
 alone (Messenger, Read 2012)

Measuring the EOS

 However, there are many models and we don't know what the correct one is

• Can we discriminate among them with advanced LIGO/Virgo?

Measuring the EOS

- To investigate the measurability of the EOS we generated a set of simulated BNS events embedded in simulated noise for the advLIGO/Virgo network:
 - masses drawn from Normal($1.35M_{\odot}$, $0.1M_{\odot}$)
 - uniform in orientation, sky position
 - uniform in comoving volume with D_L in [100,250] Mpc
- Four EOS models:
 - point particle (PP)
 - MS1 (hard EoS)
 - H4 (medium EoS)
 - SQM3 (soft EoS)

Measuring the EOS

- We investigated two possible routes to infer the EOS (Del Pozzo et al, submitted to PRL):
 - 1. Expand $\lambda(m)$ in Taylor series and estimate the coefficients of the expansion

 $\lambda(m)\simeq\lambda_0+\lambda_1\,(m-1.4\,M_\odot)/M_\odot$

2. Compare the predictions from different EOS models and rank then according to the odds ratio:

$$O_{M_1,M_2} = rac{p(M_1)}{p(M_2)} rac{p(d|M_1)}{p(d|M_2)}$$

1 - Linearised approximation

• $\lambda(1.4M_{\odot})$ is measurable after 10-15 detections, separation happens for n>30

2 – Model selection

• If we define a "detection" threshold of $log(O_{ij}) \ge 30$, few tens of sources are necessary. Not unreasonable, given the expected rates.

	Model	PP	MS1	H4	SQM3
bdel	PP	-	5	10	15
true mo	MS1	5	-	20	10
	H4	10	45	-	15
	SQM3	15	15	>50	-

Measuring the redshift

- Let's assume that we know the EOS, how well can we measure the redshift with ET?
- Generated 200 BNS sources uniformly distributed in comoving volume in a concordance cosmology with max(z) = 4 observed by ET-B
- Assumed MS1 EOS (most optimistic case)
- Analysis done using a Nested Sampling algorithm

Measuring the redshift

• Typical uncertainty of 40%, but no systematic bias

Walter Del Pozzo, Cardiff University Li, Del Pozzo, Messenger, 2013

Measuring the distance

The distance shows a systematic bias

Measuring the cosmological parameters with ET

- We seem to have all necessary ingredients
- Simulated 1000 BNS events, distributed in comoving volume up to z=4

Measuring the cosmological parameters with ET

- Since thresholds would introduce biases in our estimates (e.g. Messenger & Veitch 2013), we take into account every source, irrespective of their optimal SNR
- This is critical because of the redshift prior

The redshift prior

• The natural choice for the prior for the redshift is (e.g. Coward & Burman 2005):

$$p(z|\vec{\Omega}) = \frac{1}{R(z_{\max})} \frac{dR}{dz}$$

$$r_0 = e(z) = const$$

$$\frac{dR}{dz} = \frac{D_c^2}{1+z} \frac{r_0 e(z)}{H(z)}$$

 Note that, differently from most inference problems, the prior depends on the parameters we are trying to estimate

The redshift prior

• This dependence has some interesting consequences

The redshift prior

- The prior acts such that:
 - quiet sources tend to select empty universes

 $\Omega_m o 0, \Omega_\Lambda o 1$

loud sources do the opposite

 $\Omega_m o 1, \Omega_\Lambda o 0$

• It is thus necessary take them all into account to converge to the right answer

Analysis

- We found that a direct approach is prone to errors due to poor sampling
- Two stage approach:
 - For each source:
 - marginalise the likelihood over all parameters except redshift and distance using a Nested Sampling
 - model the resulting 2D quasi-likelihood using a 7 components Gaussian mixture model
- Sample with an MCMC the posterior

 $p(\vec{\Omega}|\epsilon_1, \dots, \epsilon_n, \mathcal{H}, \mathcal{I}) = p(\vec{\Omega}|\mathcal{H}, \mathcal{I}) \prod_{i=1}^n \int dD_{L,i} dz_i \, p(z_i|\vec{\Omega}, \mathcal{H}, \mathcal{I}) p(D_{L,i}|z_i, \vec{\Omega}, \mathcal{H}, \mathcal{I}) p(\epsilon_i|D_{L,i}, z_i, \mathcal{H}, \mathcal{I})$ $p(D_L|z, \vec{\Omega}, \mathcal{H}, \mathcal{I}) = \delta(D_L - D(\vec{\Omega}, z))$

 $h \in [\underbrace{0.5}_{\text{5/10/13}}, 1.0], \Omega_m \in [0.0, 1.0], \Omega_{\Lambda} \in [\underbrace{0.0, 1.0}_{\text{Walter Del Pozzo, Cardiff University}}, \Omega_k = 1 - \Omega_m - \Omega_{\Lambda}$

Results – 100 events

Results – 100 events

Results - extrapolation

 Assume that, for a large number of sources (>100), the 68% CL width scale approximately like the square root of the number of sources

# sources	Δh	∆Omega matter	∆Omega k	∆Omega Lambda			
1	0.16	0.3	0.4	0.32			
10	0.15	0.23	0.35	0.3	WMAP7 (Komatsu et al 2011		
100	0.13	0.18	0.31	0.28			
10 ³	0.04	0.06	0.1	0.1			
10 ⁴	0.01	0.02	0.03	0.03	extranolated		
10 ⁵	0.004	0.006	0.01	0.01			
10 ⁶	0.001	0.002	0.003	0.003			

Dark energy equation of state

- The acceleration of the expansion has sparkled interest into a varying equation of state for Dark Energy
- The Hubble parameter is modified to: $H(z) = H_0 \left[\Omega_m (1+z)^3 + \Omega_k (1+z)^2 + (1 - \Omega_m - \Omega_k) E(z)\right]^{1/2}$
- and in the Chevallier-Polarski-Linder form: $E(z) \equiv (1+z)^{3(1+w_0+w_a)}e^{-3w_a z/(1+z)}$
- We assumed Ω_m, Ω_k, H_0 known and tried to infer w_0, w_a

Results – 100 events

Why we need "non-detection"

 Messenger & Veitch have shown that an unbiased inference requires to account for "non-detections"

Outlook

- Knowledge of the EOS should allow ET to make cosmological measurements that are comparable to current or future EM mission
 - however, the pdfs we obtained are NOT gaussians, so the central limit theorem for 100 sources is not yet satisfied, more simulations are needed
- The z uncertainty is of order 40%, knowing the mass function should improve it
 - Can we measure it with 2nd generation? (Del Pozzo, Messenger, Veitch, in preparation)
- We assumed a constant rate, how do more realistic models affect our results?

Summary

- Differently from electromagnetic waves, the Universe is transparent to GW
 - GW offer the unique possibility of independently testing the current cosmological paradigm
- Second generation instruments will constrain H₀
- Third generation instruments will constrain the energy content of the Universe