Group away day - pyCBC worksheet
Sebastian and Frank - 27/02/2015

So you want to run an offline matched filtered analysis for CBC sources on detector data!?

In this worksheet you will learn the following;

1.
2.

w

c) 2l R [e B

How to generate a grid proxy so you can login to ligo clusters
Login to geo using gsissh
a. geo address - geo2.arcca.cf.ac.uk
Source the local LALsuite and pycbc
a. source /scratch/LIGO/Apps/LALSuite/Master/etc/lalsuiterc
Create a directory to store your runs.
Create a workflow
Run pegasus planning script
Submit the pegasus job [well, you might not actually want to do this today]
Monitor jobs
Study Results Page [which magically, you will be able to do today]

1.a

Create a proxy

$ ligo-proxy-init albert.einstein

Your identity: albert.einstein@RLIGO.ORG

Enter pass phrase for this identity:

Creating ProXYttt ittt nnnnnnnn Done
Your proxy is valid until: Mar 1 11:39:45 2015 GMT

1.b

Now you have a proxy you can log in to any LIGO cluster.
Note you can also access clusters through ssh using the new command

$ ssh albert.einstein@ssh.ligo.org

which returns an interactive list of all the clusters you can login to.

1.c

Next login to geo2

$ gsissh geo2.arcca.cf.ac.uk

We have a cluster wide copy of LALsuite and pyCBC that we can use, thanks to Paul.
To set up your shell environment source Paul’s script with

1d

$ source /scratch/LIGO/Apps/LALSuite/Master/etc/lalsuiterc

Loading modules. . .Done.

Sourcing glue, lalapps, lalburst, lalframe, lalinference, lalinspiral, lalmetaio, lalpulsar,
lalsimulation, lalstochastic, lal, lalxml, pycbc, pylal, Done.

Configuring ligo_data_find...Done.

le
Check that you can run some LAL code. Run the following code and check that you get the same output.

$ ligo_data find -o H -t H1_ER CO00_AGG -T --url-type file
file://localhost/scratch/LIGO/Data/H/H1_ER C00_AGG/1102/H-H1 _ER CO00_AGG-1102863360-256.gwf

Now that you are logged onto a cluster and have LALSuite and pyCBC running let’s start to setup an analysis! This worksheet
follows closely the following webpage:
https://Idas-jobs.ligo.caltech.edu/~cbc/docs/pycbe/workflow/pycbc_make_coinc_workflow.html

—
—h

Make a directory where we can store the files of today’s worksheet

$ cd ~/
$ mkdir away_ day pycbc

1g
Next we need to get some example configuration (.ini) files

$ cp /scratch/LIGO/Admin/LALSuite/Build/pycbc/pycbc/workflow/ini_ files/example pycbc.ini

$ cp /scratch/LIGO/Admin/LALSuite/Build/pycbc/pycbc/workflow/ini_ files/example pipedown.ini

$ cp /scratch/LIGO/Admin/LALSuite/Build/pycbc/pycbc/workflow/ini_ files/example inj.ini

We need to change the “example_pycbc.ini” file because there is an out of date option (see 1.h), but in addition to that, feel free to
look around and play with changing options if you feel adventurous.

1.h

$ vi example pycbc.ini

Then type “/ cluster-before-veto” to find this line in the file.
Delete this line, then save and quit the file.

Next we need to set up so shell variables

—

$ export LOCAL CONFIG_FILES="example pycbc.ini example inj.ini example pipedown.ini"

1§

The example script is set up to analyse 24 hours of S6 data. (And who knows, there might be a “signal” in there waiting to be
discovered.)

$ export GPS_START TIME=967593543
$ export GPS_END_TIME=967679943

https://ldas-jobs.ligo.caltech.edu/~cbc/docs/pycbc/workflow/pycbc_make_coinc_workflow.html

Log file directory

$ export LOGPATH=/scratch/${USER}/away_day_ pycbc/log
$ export PIPEDOWNTMPSPACE=/scratch/${USER}/away_ day pycbc/
$ mkdir -p S$LOGPATH

—

Output webpage directory

$ export HTMLDIR=/home/${USER}/public_html/LVC
$ mkdir -p $HTMLDIR

1.m

Now we have everything setup to construct the workflow.
Generate a workflow using:

$ pycbc_make coinc_workflow —local-config-files ${LOCAL CONFIG_FILES} \

--config-overrides workflow:start-time:${GPS_START TIME} \
workflow:end-time:${GPS_END_TIME} \
workflow:workflow-html-basedir:${HTMLDIR} \
workflow:pipedown-log-path:${LOGPATH} \
workflow:pipedown-tmp-space: ${ PIPEDOWNTMPSPACE}

This will create a directory with the name of the start and end GPS time you specified earlier.
1.n

Now we want to run the pegasus planning script

$ cd ${GPS_START TIME}-${GPS_END TIME}

-
[¢]

Run the pegasus planning script, and you should see output similar to the following:

$ pycbc_basic_pegasus_plan weekly ahope.dax $LOGPATH

Generating concrete workflow

2015.02.25 14:59:12.741 GMT:

I have concretized your abstract workflow. The workflow has been entered

into the workflow database with a state of "planned". The next step is

to start or execute your workflow. The invocation required is

pegasus-run /home/spx8sk/away_day_ pycbc/log/spx8sk/pegasus/weekly ahope/run0001

Then you can run the command pegasus-run and you should see something like the following

[spx8sk@geo2 967593543-967597143]$ pegasus-run
/home/spx8sk/pycbc_tests/feb_away_day_ tests/testl/log/spx8sk/pegasus/weekly ahope/run0001

File for submitting this DAG to Condor : weekly ahope-0.dag.condor.sub
Log of DAGMan debugging messages : weekly ahope-0.dag.dagman.out
Log of Condor library output : weekly ahope-0.dag.lib.out
Log of Condor library error messages : weekly ahope-0.dag.lib.err
Log of the life of condor_ dagman itself : weekly ahope-0.dag.dagman.log

Submitting job(s).
1 job(s) submitted to cluster 6292804.

Your workflow has been started and is running in the base directory:
/home/spx8sk/pycbc_tests/feb_away_day tests/testl/log/spx8sk/pegasus/weekly ahope/run0001
*** To monitor the workflow you can run ***

pegasus-status -1
/home/spx8sk/pycbc_tests/feb_away_day_ tests/testl/log/spx8sk/pegasus/weekly ahope/run0001

*** To remove your workflow run ***

pegasus-remove
/home/spx8sk/pycbc_tests/feb_away_day_ tests/testl/log/spx8sk/pegasus/weekly ahope/run0001

You can also use the following to monitor your jobs.

$ condor_gq

keeping an eye on your jobs

$ pegasus-status -1 /home/spx8sk/away_day_ pycbc/log/spx8sk/pegasus/weekly ahope/run0001
$ pegasus-analyzer -f /home/spx8skaway day pycbc/log/spx8sk/pegasus/weekly ahope/run0001

Depending on the details of the analysis, for example the during of the length of detector time you wish to search over
(which $ {GPS_END_TIME}-${GPS_START TIME}), you will start to see ouput after some time.

For the 24 hour analysis, The whole job took about 4-5 hours to run.
After the main analysis has been done, the script also does some post-processing, and produces plots which eventually end up in
the public_html directory. If for any reason the post-processing fails then you can manually run the process of building the web

page using the following

$ pycbc_write results_page --config-file
/home/spx8sk/pycbc_tests/feb_away day tests/967593543-967679943/wip.ini

To view a results web page change check out my example

https://geo2.arcca.cf.ac.uk/~spx8sk/ahope/967593543-967679943/

https://geo2.arcca.cf.ac.uk/~spx8sk/ahope/967593543-967679943/

