CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

Patrick's plans for O3 Gravity Exploration Institute

The Burst Group

All-sky search (short & long duration) IMBH Search Cosmic strings Isolated neutron star transients Core-collapse supernovae EOS with pre/post-merger GWs Gamma-Ray Bursts (incl. FRBs) High Energy Neutrinos

Bursts Landscape

(MY SUBJECTIVE OPINION)

pipeline	Fast?	Good?	Who	Comment
cWB	Yes	Yes	Florida, Trento	800lb gorilla of bursts
oLIB	Yes	No	MIT	2cd all-sky pipeline
BayesWave	No	Yes	Montana, Alabama	waveform reconstruction
STAMP-AS	No	Yes	Stochastic	long-duration transients
X-Pipeline	No	Yes	Cardiff, Sheffield	external triggers

X in a Nutshell

- Read h(t) data for a network of detectors.
- Whiten, FFT.
- Sum FFTed data over detectors to make time-frequency maps of various energy measures.
 - detectors weighted by F+, Fx, S(f) in sums
- Threshold on map energy values; loud pixels are clustered together to form "events".
 - Each event characterised by peak time, duration, bandwidth, significance (w.r.t Gaussian noise), various energy measures.

- Estimate significance of on-source events by comparing to off-source.
 - Possible GW detection := significant event
- Estimate minimum detectable GW amplitude by adding simulated GWs to the on-source data and re-analysing.
 - Upper limit := signal amplitude/energy at which 90% of simulated GWs are louder than the loudest on-source event.

Background rejection

- Apply cuts to energies that measure correlation between detectors.
 - Cut thresholds determined automatically for each GRB by comparing background and simulation events.

These techniques work

cWB on GW150914

X-Pipeline on GRB170817A

Cardiff burst activities

- Vassilis: Deep Neural Networks for burst detection
- Scotty: SNEWS triggered supernova search (X-Pipeline), also GravitySpy
- Ronaldas: burst signal interpretation & burst GRBs (X-Pipeline)
- Iain: multi-variate analysis (X-Pipeline), also CBC GRBs
- Patrick: X-Pipeline development, general ranting

X-Pipeline developments (me)

- Support for triggered searches (GRBs) and allsky search (Sheffield)
 - Code improvements to post processing for speed, robustness, ease of development
 - More efficient use of injections (fewer)
- Goals: reduce latency time
 - GRB searches from ~1 day to a few hours
 - SNEWS: aim for ~ 1 hour turn around

All-sky Neural Network Search (Vassilis)

- Use existing NN packages
- Train on HLV data ("colour images").
- Goal: day latency all-sky burst search.
 - Use existing X infrastructure for data finding, conditioning, etc.

Echoes

Look for post-merger echoes from BNS / NS-BH detections.

- Analysis simple & fast (~ CPUday).
- Now: finish & publish GW170817 follow-up on pubic data.
- O3 goals: Repeat (quickly) for any further BNS / NS-BH detections.
- Low cost, speculative.