

10 years of Neutrino Point-Source Searches

Tessa Carver

Cardiff Group Meeting - June 21st 2019

Why Neutrinos ?

- **Protons / Cosmic Rays** : directly from the astrophysical sources.
- **Photons** : produced by leptonic and hadronic processes at the source.
- **Neutrinos** : produced only by Hadronic CR interactions.

Hadronic Interactions :

$$pp \Rightarrow \pi^{0} \Rightarrow \gamma \gamma$$
$$pp \Rightarrow \pi^{\pm 1} \Rightarrow \mu^{\pm 1} + \nu_{\mu} \Rightarrow \nu_{\mu} + e^{\pm 1} + \overline{\nu}_{e} + \nu_{\mu}$$

- Photons and CRs are attenuated by CMB & surrounding matter
- CRs are deviated due to their charge
- Neutrinos travel unimpeded accross the universe so they can point directly towards the source.

IceCube Detector

What Do We Detect ?

- Neutrinos interact in the ice producing charged leptons.
- Charged leptons induce Cherenkov radiation while traversing the ice.

How ?

- 86 strings in cubic km of Antarctic Ice over 1.45 km below the surface [1].
- Each string has 60 Digital Optical Modules (DOMs).

[1] Aartsen, M. G., et al. 2017, JINST, 12, P03012

IceCube Events

Size of dom : Energy deposited

- High Energy Muons propagate in the ice.
- From: Atmospheric Muons, and Charged Current $\, \nu_{\mu} \,$ interactions.
- Angular Resolution $< 1^{\circ}$ [2]
- Poor Energy resolution (factor 2)

- Shower of charged particles in the ice
- From: ν_{τ} , ν_{e} , and Neutral Current ν_{μ} interactions.
- Angular Resolution $\sim 15^{\circ}$ [3]
- Good Energy Resolution (15%)

[3] Aartsen, M. G., et al. 2017, Astrophys. J., 846, 136[2] Aartsen, M. G., et al. 2014, Nucl. Instrum. Meth., A736, 143

Updated Direction Reconstruction

 $\Delta \Psi$ = median angular difference between true neutrino direction and reconstructed muon direction.

- Angular Resolution $\,:\,{\sim}1^{0}$ at 1TeV to ${\sim}0.2^{0}>$ 100 TeV.
- New direction reconstruction re-applied to both hemispheres. Inspired by improved sensitivity of northern sky analysis [9]
 - \rightarrow Over 10% improvement for events > 10 TeV compared to 7 year all-sky selection [10].

[9] Aartsen, M. G., et al. 2019, Eur. Phys. J. C., arXiv:1811.07979 [10] Aartsen, M. G., et al. 2017, Astrophys. J., 835, 151

- Southern hemisphere heavily contaminated by atmospheric neutrinos & muons
- Muons produced in the northern atmosphere cannot reach IceCube

Analysis Motivation

[4] M. G. Aartsenet al. (IceCube), Science361, 147-151 (2018),

Analysis Motivation

- IceCube discovered diffuse astrophysical flux.
- Evidence has been presented for only 1 neutrino source. (TXS 0506+056 [4])
 → ~1% of the diffuse flux.
- Data dominated by atmospheric events. However, we expect :
 - \rightarrow *Clustered* or **correlated** signal (in space and/or time)
 - \rightarrow **Uniform** Background
- Astrophysical spectrum expected to be harder : dN/dE \propto E- γ , 1 $<\!\gamma\!<\!4$

[4] M. G. Aartsenet al.(IceCube), Science361, 147-151 (2018),

Cardiff Group Meeting - June 21st 2019

Updated Point Source Searches

Search	Advantages	Disadvantages	Less
All Sky Scan	 Allows for sources not well observed by other messengers including unexpected source candidates 	 Large penalty from trials. Requires a very strong source to be more significant than any possible background fluctuation. 	Required Source Knowledge Less sensitivity
Source List Search	 Provides significance and fit information specific to individual sources. 	 Limited to low number of possible candidates. Limited by sensitivity at the source location. 	
Stacking Search	 Gain large factors in sensitivity especially in regions where IceCube is less sensitive (Southern Hemisphere) 	 Requires more source knowledge. Most stacked locations should emit a neutrino flux → strong penalty if an inaccurate weighting scheme is implemented. 	Increasing Knowledge & Sensitivity

All-Sky Scan

- 1) Create grid of points with ${\sim}0.9^\circ$ binning across the entire sky.
- 2) Exclude regions around poles due to low statistics.
- 3) Maximize Signal/Background likelihood ratio (TS) at every point.
- 4) Re-iterate with finer binning
- 5) Repeat until evaluated for $\sim 0.1^{\circ}$ binning
- 6) Use TS to calculate pre-trial p-value

All-Sky p-value map

- Most significant pre-trial p-value in each hemisphere. \rightarrow Hotspots.
- post-trial p-values calculated by comparing hotspots from different scans of background with final true scan.

<u>Updated Individual Source List</u>

New source candidates list of 110 Galactic & Extragalactic sources :

 The top 5% of extra-galactic sources organised by Flux integral from Fermi catalog : BL LAC, Flatspectrum radio quasar (FSRQ), Starburst galaxies, AGN.

- From the Fermi catalog only 8 galaxies were identified with known starburst activity so they were all kept.
- For Galactic sources criteria was applied where model flux > 50% of the sensitivity flux for each source.

- Search for excess in rate of hotspots in the catalog.
- Assume a binomial distribution.
 - \rightarrow Probability of k out of N sources passing a threshold (p_k) :

$$P_{\text{binom}}(k|p_k,N) = \binom{N}{k} p_k^k (1-p_k)^{N-k}$$

 \rightarrow Iterate the threshold to test k=1,2,3,...,N.

- Example :
 - \rightarrow 1 x 2 σ source out of 100 : P_{binom} (1|0.02,100)=0.87 (Under-fluctuation.)
 - \rightarrow 10 \times 20 sources out of 100 $\,:\,$ P_{_{binom}} (10|0.02,100)= $\,$ 40

Stacking Searches

- Galactic source flux alone < sensitivity flux \rightarrow large section of the Galactic plane in the southern hemisphere.
- Optimal for sources with similar spectra \rightarrow single fit spectral index.

Stacking Searches

- Galactic source flux alone < sensitivity flux \rightarrow large section of the Galactic plane in the southern hemisphere.
- Optimal for sources with similar spectra \rightarrow single fit spectral index.
- 3 catalogs :
 - \rightarrow 58 Unidentified sources (UNID)
 - \rightarrow 33 Pulsar Wind Nebula (PWN)
 - \rightarrow 23 Supernova Remnant (SNR)

Casseopia A

10 year All-Sky Scan Results

 Scan the entire sky and evaluate the likelihood of signal over background.

 The position with the smallest p-value in each hemisphere is taken as the hottest spot.

Hottest Point in Northern Hemisphere : $\delta \ge -5^{\circ}$ RA = 40.87°, Dec = -0.30° n_{signal} = 61.45, γ = 3.411 -log(p) = 6.45, TS = 25.34 \Rightarrow 9.9 % post-trial Hottest Point in Southern Hemisphere : δ < -5° Ra = 350.18°, dec -56.45° n_{signal} =17.75, γ = 3.34 -log(p) =5.37, TS= 19.95 \Rightarrow 75 % post-trial

10 year All-Sky Scan Results

- Scan the entire sky and evaluate the likelihood of signal over background.
- The position with the smallest p-value in each hemisphere is taken as the hottest spot.

Hottest Point in Northern Hemisphere : $\delta \ge -5^{\circ}$ RA = 40.87°, Dec = -0.30° n = 61.45, γ = 3.411 -log(p) = 6.45, TS = 25.34 \Rightarrow 9.9 % post-trial Hottest Point in Southern Hemisphere : δ < -5° Ra = 350.18°, dec -56.45° n = 17.75, γ = 3.34 -log(p) =5.37, TS= 19.95 \Rightarrow 75 % post-trial

Name	Ra (°)	Dec (°)	TS	n signal	γ	$-\log_{10}(p_{local})$	Pre-trial σ
NGC 1068	40.67	-0.01	17.04	50.4	3.16	4.74	4.13
TXS 0506+056	77.35	5.70	13.05	12.32	2.08	3.72	3.55
PKS 1424+240	216.76	23.8	9.88	41.47	3.94	2.8	2.95
GB6 J1542+6129	235.75	61.50	9.29	29.72	3.02	2.74	2.91
MGRO J1908+06	287.17	6.18	3.48	4.22	1.96	1.42	1.77
PKS 1717+177	259.81	17.75	2.96	19.82	3.65	1.32	1.66
PKS 2233-148	339.14	-14.56	2.8	5.32	2.80	1.26	1.6
B2 1215+30	184.48	30.12	2.67	18.60	3.39	1.09	1.4
M 31	10.82	41.24	2.11	10.99	4.0	1.09	1.4
4C +55.17	149.42	55.38	1.61	11.88	3.27	1.02	1.31

Name	Ra (°)	Dec (°)	TS	n _{signal}	γ	$-\log_{10}(p_{local})$	Pre-trial σ
NGC 1068	40.67	-0.01	17.04	50.4	3.16	4.74	4.13
TXS 0506+056	77.35	5.70	13.05	12.32	2.08	3.72	3.55
PKS 1424+240	216.76	23.8	9.88	41.47	3.94	2.8	2.95
GB6 J1542+6129	235.75	61.50	9.29	29.72	3.02	2.74	2.91
MGRO J1908+06	287.17	6.18	3.48	4.22	1.96	1.42	1.77
PKS 1717+177	259.81	17.75	2.96	19.82	3.65	1.32	1.66
PKS 2233-148	339.14	-14.56	2.8	5.32	2.80	1.26	1.6
B2 1215+30	184.48	30.12	2.67	18.60	3.39	1.09	1.4
M 31	10.82	41.24	2.11	10.99	4.0	1.09	1.4
4C +55.17	149.42	55.38	1.61	11.88	3.27	1.02	1.31

Evidence for a flaring Blazar

from a flare in 2014. (M. G.

Aartsen et al. 2018)

Name	Ra (°)	Dec (°)	TS	n _{signal}	γ	$-\log_{10}(p_{local})$	Pre-trial σ
NGC 1068	40.67	-0.01	17.04	50.4	3.16	4.74	4.13
TXS 0506+056	77.35	5.70	13.05	12.32	2.08	3.72	3.55
PKS 1424+240	216.76	23.8	9.88	41.47	3.94	2.8	2.95
GB6 J1542+6129	235.75	61.50	9.29	29.72	3.02	2.74	2.91
MGRO J1908+06	287.17	6.18	3.48	4.22	1.96	1.42	1.77
PKS 1717+177	259.81	17.75	2.96	19.82	3.65	1.32	1.66
PKS 2233-148	339.14	-14.56	2.8	5.32	2.80	1.26	1.6
B2 1215+30	184.48	30.12	2.67	18.60	3.39	1.09	1.4
M 31	10.82	41.24	2.11	10.99	4.0	1.09	1.4
4C +55.17	149.42	55.38	1.61	11.88	3.27	1.02	1.31

- Evidence for a flaring Blazar from a flare in 2014. (M. G. Aartsen et al. 2018)
- Most signifcant excess in the Northern Source List. \rightarrow 2.9\sigma post-trial
- 0.35° from the hottest point in the sky.

Source Population Results

Search for an excess of hotspots \rightarrow A significant p-value could demonstrate inconsistency with background only for entire catalog.

- Probability of k or more sources passing a threshold out of a sample of N.
- Most significant result: 4σ pre-trial where k=4.
- \rightarrow 3.30 post-trial. (2.250 w/o TXS 0506+056) to account for N other possible excesses
- Includes NGC 1068, TXS 0506+056, PKS 1424+240, GB6 J1542+6129

Cardiff Group Meeting - June 21st 2019

ICECUBE

Cassiopeia A : SNR

- **10 year Stacking Results**
 - 3 Galactic catalogs updating published results [12]
 - Weighted the sources in each catalog by the integral flux above 10 TeV as estimated by Gamma ray observations.
 - All catalogs consistent with background.
- 90% upper-limits calculated for emission from each catalog parametrized as :

Crab Nebula: PWN

 $d\phi_{\nu+\bar{\nu}}/dE = \phi_{_{90\%}} x (E/1\text{TeV})^{-2} \text{ GeV}^{-1} \text{cm}^{-2} \text{s}^{-1}$

Source Catalog	Number of sources	p-value	n_s	γ	$\phi_{90\%}$
Supernovae Remnants	23	0.11	23.9	3.55	4.96×10^{-15}
Unidentified Objects	58	0.4	3.28	2.39	1.56×10^{-15}
Pulsar Wind Nebula	33	1.0	-	-	2.64×10^{-15}

[12] M. G. Aartsen Astrophys.J. 849 (2017) 67

Summary

- No new neutrino steady state source has been discovered.
- NGC 1068 in coincidence with Northern Hotspot. 2.9 σ post-trial pvalue.
- Source List Catalog is inconsistent with background only hypothesis at 3.3σ \rightarrow Includes: NGC 1068, TXS 0506+056, PKS 1424+240,GB6 J1542+6129
- The best fit neutrino flux for NGC 1068 is greater than current Gamma ray observations.
- Results demonstrate a strong motivation to continue to analyse the objects in these catalogs.

M77/NGC 1068 https://www.flickr.com/groups/hubblehiddentreasures_advanced/

Back up

Selection Effective Area

- Effective Area comparable to previous event selection.
- Rate of ν depends on Energy & Declination
 - \rightarrow Southern events must have higher energy due to strict cuts.
 - \rightarrow Northern events can be filtered by Earth.

Point Spread Function : All Years

Effective area : All Years

Cardiff Group Meeting - June 21st 2019

Likelihood Method

- Probability Density Function (PDF) contains spatial & energy component:
 - 1) \rightarrow Spatial clustering Signal according to a 2D Gaussian distribution
 - \rightarrow Atmospheric background uniform in Right Ascension.
 - 2) Signal events and background events to follow different spectra.

• Maximize Test Statistic (TS):

$$= 2log \left[\frac{\mathcal{L}(n_s, \gamma)}{\mathcal{L}(n_s = 0)}\right] \rightarrow n_s, \gamma \text{ are free parameters.}$$

[11] Abbasi, R., et al. 2011, Astrophys. J., 732, 18

Likelihood Method

- Probability Density Function (PDF) contains spatial & energy component:
 - 1) \rightarrow Spatial clustering Signal according to a 2D Gaussian distribution
 - \rightarrow Atmospheric background uniform in Right Ascension.
 - 2) Signal events and background events to follow different spectra.
- Maximize Test Statistic (TS): TS = $2log \left[\frac{\mathcal{L}(\hat{n_s}, \hat{\gamma})}{\mathcal{L}(n_s = 0)} \right] \rightarrow n_s, \gamma$ are free parameters.

^[11] Abbasi, R., et al. 2011, Astrophys. J., 732, 18

Likelihood Method

component:

Maximize Test Statistic (TS):

- 1) \rightarrow Spatial clustering Signal according to a 2D Gaussian distribution
 - \rightarrow Atmospheric background uniform in Right Ascension.

2) Signal events and background events to follow different spectra.

TS =
$$2log\left[\frac{\mathcal{L}(\hat{n_s}, \hat{\gamma})}{\mathcal{L}(n_s = 0)}\right] \rightarrow n_s, \gamma$$
 are free parameters.

[11] Abbasi, R., et al. 2011, Astrophys. J., 732, 18

P-value calculation

- Maximize TS at the same point using 1 million trials \rightarrow TS distribution.
- Fit TS distribution with $\,\chi^{_2}$
- Pre-trial p-value = Fraction of trials $> TS_{unblinded}$

New Selection Performance

- Estimate signal flux for analysis to be sensitive to/discover a source. $\rightarrow \sim 35\%$ improvement in sensitivity wrt to previous 7 year analysis [10]
- 8 year northern sky analysis [9] optimised for E^{-2.19} spectra
 - \rightarrow Comparable sensitivity for E^-2
 - \rightarrow New analysis shows ${\sim}30~$ % improvement for soft spectra ${\sim}$ E^-3.

[9] Aartsen, M. G., et al. 2019, Eur. Phys. J. C., arXiv:1811.07979 [10] Aartsen, M. G., et al. 2017, Astrophys. J., 835, 151

Cardiff Group Meeting - June 21st 2019

Previous Point Source Analyses

- 7 year All sky search
 - \rightarrow General search for Neutrino sources

(M.G. Aartsen et al. 2017)

• 8 year Northern sky Search :

 \rightarrow Optimised for observed diffuse flux $\,$ E^{-2.19}

(M. G. Aartsen et al. 2018)

• 10 year search : same method as 7 year all-sky

1) new source catalog

2) updated event selection for the final 6 years.

Analysis	Data Selection	All-Sky Scan	Source List Results
All-Sky Search	7 years μ tracks	North: $1.82 \times 10^{-6} \rightarrow 29\%$ (post- trial) South: $0.93 \times 10^{-6} \rightarrow 17\%$ (post- trial)	$2 \sim 1\%$ p-values North : 1ES 1959+650 $1.8\% \rightarrow 54\%$ (post-trial) South : PKS 1406-076 $5.3\% \rightarrow 37\%$ (post-trial)
Northern Sky search	8 years diffuse μ tracks	North: $1.07 \times 10^{-6} \rightarrow 26.5\%$ (post-trial)	4 ~1% p-values 4C 38.41 : $0.8\% \rightarrow 23.7\%$ (post-trial)

Multi-wavelength Observations around NGC 1068

- ICECUBE
- Barred spiral galaxy with AGN \rightarrow brightest seyfert II galaxy.
- Dense clouds of matter around central AGN, regions of intense star-formation.
- 47 million light years away (redshift 0.003) IceCube $\nu_{\mu} + \bar{\nu}_{\mu}$ Best Fit Lamastra et al. $2016:\gamma$ 10^{-10} Lamastra et al. $2016:\nu_{\mu}$ Preliminary H.E.S.S. upper limit (4hr) Fermi-LAT (7.5yrs) $E^2 dN/dE$ [TeVcm] 10^{-11} 10^{-12} 10^{-13} 10^{-2} 10^{2} 10^{0} 10^{-4} E [TeV]
 - These results show large uncertainties in spectral index & flux normalization.
 - \rightarrow Best-fit normalisation is greater than current Gamma-ray observations.

M77/NGC 1068 https://www.flickr.com/groups/hubblehiddentreasures_advanced/

Gamma-ray & Neutrino Sources

- TXS 0506 identified with neutrinos: High energy alert in coincidnce with a flaring blazar.
- Archival search found neutrino flare in 2014.
- No flare in Gamma observed at the same time. log(Frequency [Hz]) 10 12 14 16 18 20 22 24 26 28 30 10^{-10} 10^{-1} $dN/dE [erg cm^{-2} s^{-1}]$ 10^{-12} ЗШ 10-13 Archival SARA/UA INTEGRAL (UL VERITAS (UL) VLA Swift UVOT Fermi-LAT HAWC (UL) OVRO ASAS-SN AGILE Neutrino - 0.5yr Kanata/HONIR Swift XRT MAGIC Neutrino - 7.5yr 10^{-14} Kiso/KWFC NuSTAR H.E.S.S. (UL) 1015 10^{-6} 10^{-3} 10^{0} 10^{3} 10^{6} 10^{9} 10^{12} Energy [eV]

ICECUBE

A closer look around NGC 1068

• Weighted event distribution assuming source @ NGC 1068 :

ICECUBE

A closer look around NGC 1068

• Weighted event distribution assuming source @ NGC 1068 :

Cardiff Group Meeting - June 21st 2019

Simulating NGC 1068

- 1) Create background trial (scrambling event RA)
- 2) Inject simulation of best-fit ν flux @ NGC 1068.
- 3) Scan $\pm 5^{\circ}$ around coordinates.
- 4) Fit most significant p-value.
- Hotspot $> 1^{0}$ away from NGC 1068 implies failed fit.

Can hotspot be shifted from true source location ?

- ~70% within 1°, ~51% within 0.35°, peaked at 0.2°. When the hotspot is shifted, is it extended ?
- $shift = 0.35^{\circ}$

 \rightarrow typical ~35% drop in TS hotspot \rightarrow source.

(Drop in TS for unblinded map was $\sim 30\%$)

